

Photon Detectors for the LHCb RICH System

Lisa Allebone

Overview

- The LHCb detector and its aims
- Ring Imaging Cherenkov (RICH) system
- Pixel hybrid photon detectors (HPDs)
- HPD characterisation tests
- Conclusions

The LHCb Detector

- Single arm forward spectrometer
- Silicon strip vertex detector
- Two RICH detectors for K/pi separation
- 4 Tm dipole magnet
- T1-T3 silicon/straw tracking stations
- M1-M5 muon chambers
- Calorimetry: scintillating pad detector, pre-shower, ECAL and HCAL
- Trigger and DAQ systems

The LHCb RICH System

- Hadron PID important for precise **CP** studies
- Need hadron PID over 1-150 GeV
- Use 3 different radiators; aerogel, C_4F_{10} and CF_4
- Correlation between particle momentum and angle
- RICH system split into two detectors

RICH1 y-z plane

Pixel Hybrid Photon Detectors

Developed in collaboration with industry to fulfil stringent LHCb requirements:

- single p.e detected in range 200-600nm
- high readout speed of 25ns
- spatial granularity of 2.5mmx 2.5mm at photocathode level

HPD Description

- Multi-alkali photocathode deposited on quartz window inside vacuum envelope
- Photoelectrons accelerated by -20kV onto back side of Si pixel anode
- Si anode array of 256x32 reverse biased p-n junctions
- Each pixel bump bonded to readout cell on binary front end chip
- Electrostatic cross focussing to image and accelerate p.e with demagnification factor ~5

Experimental Arrangement

- Tests carried out in light tight box using fast pulsed LED
- Photoelectron response investigated as function of silicon detector bias and tube high voltage
- Estimation of single p.e detection efficiency
- Ion feedback and dark current rates investigated

Tube High Voltage Scan

- Increase in HV results in increase of charge deposited in Si
- Plateau not reached due to back scattered p.e
- Differential number of firing pixels plot reflects chip discriminator level :
- Average threshold 4.3kV/3.6eV ~ 1200 e-
- -Threshold spread 0.46kV/3.6eV ~ 130 e-
- Pixels that first fire at high HV correspond to back scattered p.e

Silicon Detector Bias Scan

- Below 30V bias p.e stopped within first few microns of Si
- Increasing bias voltage increases charge collection efficiency
- No plateau reached due to charge sharing
- Over depleting silicon reduces fraction of double pixel clusters due to decrease in charge sharing probability

Photoelectron Detection Efficiency

- Analog back pulse signal used to calibrate pixel binary data
- Fit analog data to estimate average number of p.e reaching detector
- Back pulse measurement only possible in lab tests
- Corrections to binary data to account for charge sharing
- Photoelectron detection efficiency ~ 88 %

Ion Feedback Rate

- Ionisation of residual gas traces originating from :
- non perfect evacuation process
- migration of gases through entrance window
- material desorption in tube structure
- Ion feedback signal recorded after primary pulse according to ion transit time (typically 220 ns)
- Ion feedback rate < 0.5 %

Dark Current Rate

- Current that flows when a voltage is applied to a tube in total darkness
- Main source is photocathode thermal emission
- Dark current rate ~ 1 kHz/cm² at 25°C
- Typical multi alkali photocathode dark current rate ~ 10 kHz/cm² at 25°C

Conclusions

- Proven HPD fulfils LHCb design specifications
 - Discriminating threshold ~ 1200 e-
 - Threshold spread ~ 130 e-
 - Single photoelectron detection efficiency ~ 88 %
 - Ion feedback and dark current background small
- HPD performance also verified in test beam environment

The RICH Principle

• If a charged particle traverses a medium, at a velocity greater than speed of light in that medium then Cherenkov light is emitted

Opening angle of emission cone is

$$cos? = 1/Bn$$

 RICH detectors measure angle of emission of the radiation using spherical mirror system

- Photon detectors placed at the focal length to detect Cherenkov radiation rings
- All photons emitted at same angle are focussed onto a point

Latest Prototype Results

500 600 700 800 900 1000

Channel no.