Latest Results From Tevatron

G.Borissov, Lancaster University

IoP High Energy Physics Conference
University of Birmingham
6 April 2004

In this talk:

- •Electro-weak physics;
- •t-quark physics;
- •B-physics;
- •Searches for the new physics (Higgs boson etc.)

Tevatron Performance

- Permanently improving accelerator performance
- 300 pb⁻¹ of data on tape per experiment
- Record initial luminosity = 7.2° 10^{31} sec⁻¹cm⁻²
- 70 pb⁻¹ recorded in 2004 by DØ (March 2004)
- Used in analysis: 100-200 pb⁻¹ (CDF), up to 250 pb⁻¹ (DØ)

Electro-weak Results

- Tevatron gives important information on properties of W, Z^0 bosons and t-quark: their production cross-section, masses and widths;
- Combined with other precise measurements, they set constraint on the Higgs boson mass;

• Many other interesting measurements with W, Z⁰, e.g. W? and Z⁰? production – information on triple boson coupling.

W and Z⁰ Production

CDF Results

$$s \cdot Br(W) = 2777 \pm 10(stat) \pm 52(syst) \pm 167(lum)$$

$$s \cdot Br(Z^0) = 254.3 \pm 3.3(stat) \pm 4.3(syst) \pm 15.3(lum)$$

From ratio of cross-sections:

Br(W
$$\otimes$$
1 ?) = 0.1093 ± 0.0021 (world average: 0.1068 ± 0.0012)
 $G_W = 2071.4 \pm 39.8$ MeV (world average: 2118 ± 42 MeV)

W? and Z⁰? Cross-section

- Two boson production is an important test of the Standard Model
- Possibility to search for anomalous tri-boson coupling
- $s(W?) = 19.3 \pm 6.7(stat) \pm 1.2(syst) pb (DØ) (Theory: 16.4 \pm 0.4 pb)$
- $s(W?) = 19.7 \pm 1.7(stat) \pm 1.1(syst) pb (CDF) (Theory: 19.3 \pm 1.4 pb)$
- $s(Z^0?) = 5.3 \pm 6.7(stat) \pm 1.2(syst) pb (CDF) (Theory: 5.4 \pm 0.3 pb)$

Top Quark

- Heaviest known quark, can be produced and studied only at Tevatron at present;
- tt-pair is produced in strong interactions;
- $Br(t \otimes W b) = 100\%$;
- Single top production: ~2 times smaller rate, not observed yet;

t-quark production

t-quark decay topologies

tt: Dilepton Final State

Event Selection:

- 2 high P_T leptons;
- Large missing transverse energy;
- Large total transverse energy;

tt: Lepton + Jet Final State

Much higher branching rate, but with larger background contribution. Each collaboration performs many different analyses varying the combination of the selection criteria. They include:

- Lepton identification;
- Combination of topological variables;
- b-tagging (soft lepton or impact parameter based);

tt: Cross-section Summary

Other Results With Top Quark (CDF)

• $R_s = s_{LL}/s_{LJ}$: 0.46 < R_s < 4.45 (95% CL) Sets the limit Br(t \otimes Xb) < 0.46 for additional all hadronic t \otimes Xb decay;

• $Br(t \otimes Wb) > 0.12 (95\% CL);$

Single top production:

Combined: s < 13.7 pb (95% CL)

t-channel: s < 8.5 pb (95% CL)

B-physics

- Tevatron good place for B-physics:
 - Large production rates of b-quarks;
 - Production of B_s , ?, not accessible at b-factories;
 - Rich *b*-quark spectroscopy (B^{**} , B_c , ?_b, O_b etc.);
- More difficult task than at b-factories:
 - Detectors were not constructed specifically for b-physics;
 - Large background level: sophisticated triggers required;
 - More complicated events, many interactions overlaid;

Lifetime of Different B-hadrons (CDF)

CDF determines lifetimes of different B hadrons in exclusive decays B® J/? X

B-hadron	CDF measurement	PDG value
\mathbf{B}^{+}	$1.66 \pm 0.04 \pm 0.02$	1.674 ± 0.018
${f B}^0$	$1.49 \pm 0.05 \pm 0.03$	1.542 ± 0.016
$\mathbf{B}_{\mathbf{s}}$	$1.33 \pm 0.14 \pm 0.02$	1.461 ± 0.057
? _b	$1.25 \pm 0.26 \pm 0.10$	1.229 ± 0.080

B⁺/B⁰ Lifetime Ratio

DØ measures lifetime ratio of B^+ and B^0 using large sample of semileptonic decays $B^+ \otimes \mu^+?D^0X$, $B^0 \otimes \mu^+?D^{*-}X$ decays. t^+/t^0 is determined from $N(\mu^+?D^{*-}X)/N(\mu^+?D^0X)$ at different decay distances.

$$t^+/t^- = 1.093 \pm 0.021 \pm 0.022$$
 DØ, semileptonic

$$t^+/t^- = 1.119 \pm 0.046 \pm 0.014$$
 CDF, exclusive J/?

B-hadron Lifetimes: Summary

B_s Signals

6 April 2004

G.Borissov, Results From Tevatron, IoP Conference, Birmingham

(Heavy) Quark Spectroscopy

Renaissance of spectroscopy:

- B** study, production rate and mass (DØ) (see talk of M.Doidge at parallel session);
- $B \otimes \mu^+ ?D^{**}$ branching rate $(D\emptyset)$;
- X(3872) ® J/? p⁺ p⁻, confirmation of BELLE signal (DØ, CDF);
- Search for pentaquark ? (1862) ® ? p : no signal (CDF);

Other Results in B-physics

• Search for $B_{s(d)} \otimes \mu^+ \mu^-$:

$$\begin{split} &Br(B_s \ \mathbb{R} \ \mu^+\mu^-) \!\!< 7.5\,\hat{}\ 10^{\text{-}7}; \ Br(B_d \ \mathbb{R} \ \mu^+\mu^-) \!\!< 1.9\,\hat{}\ 10^{\text{-}7} \ (CDF) \ (95\% \ CL); \\ &Sensitivity \ of \ DØ \ (not \ actual \ limit \ yet): \\ &Br(B_s \ \mathbb{R} \ \mu^+\mu^-) \!\!< 1.0\,\hat{}\ 10^{\text{-}6} \ (95\% \ CL); \end{split}$$

• Milestone in preparation for the search for B_s oscillation:

```
\mathbf{B}_{d} oscillation in Run II: 0.506 \pm 0.055 \pm 0.049 (DØ);
```

• D⁰ decay rates (CDF):

$$\begin{array}{ll} G(D^0 \ \mathbb{R} \ K^+K^-) \, / \, G(D^0 \ \mathbb{R} \ Kp) &= 9.96 \pm 0.11 \pm 0.12\% \\ G(D^0 \ \mathbb{R} \ p^+p^-) \, / \, G(D^0 \ \mathbb{R} \ K^+p^-) &= 3.608 \pm 0.054 \pm 0.040\% \\ G(D^0 \ \mathbb{R} \ K^+K^-) \, / \, G(D^0 \ \mathbb{R} \ p^+p^-) &= 2.762 \pm 0.040 \pm 0.034 \end{array}$$

• CP asymmetry in D⁰ decays (CDF):

$$A(D^0 \otimes K^+K^-) = 2.0 \pm 1.2 \pm 0.6\%$$

 $A(D^0 \otimes p^+p^-) = 1.0 \pm 1.3 \pm 0.6\%$

Search for New Physics

- Tevatron provides the largest CMS energy;
- Currently, it is the only possible place to search for the new physics;
- It was one of the main goals of Run II, detectors were adjusted especially for this task;

But:

- Signal is hidden under huge background;
- Current luminosity is not sufficient to observe the SM Higgs boson;

Still:

- Non-minimal models can be tested already now;
- Many exotic particles (leptoquarks, exited leptons, extra dimensions) can be searched for;
- Experiments report many new results in the searches, but only limits, no indication of the signal yet.

Search for the Higgs Boson

- CDF search for the SM Higgs in $p\overline{p}$ ® HW ® $b\overline{b}$ 1? channel. They improved the Run I limit, but still well above the SM Higgs cross-section.
- D0 search for the MSSM Higgs boson in the multi-jet final state: pp ® bbh ® bbbb. They significantly extended the exclusion area for large tanß.

SUSY Searches

Many new limits on SUSY particles (DØ); Better limits than in Run I; For squark/gluino search in jets+MET topology: 4 events observed 2.7 \pm 1 event expected; M(squark)>292 GeV; M(gluino)>333 GeV (for m₀=25 GeV, A₀=0, tanß=3, μ =0); Chargino-neutralino search in 3 leptons+MET final state significantly improves limit from Run I. Very close now to the model prediction.

6 April 2004

G.Borissov, Results From Tevatron, IoP Conference, Birmingham

Search for Large Extra Dimensions

- Large Extra Dimensions (LED) model provides interesting explanation for the large Plank scale and weakness of graviation.
- They can be reveal itself in deviation of e⁺e⁻ or ??- cross-section from SM prediction.
- No deviation is observed so far, but both CDF and DØ set new limits, which are the most restrictive to date.

CDF Run I $M_S > 1.11 \text{ TeV}$

DØ Run II $M_S > 1.36 \text{ TeV}$

 $\begin{array}{cccc} D \rlap{/}O & Run & I+II & M_S > 1.43 & TeV \\ (M_S & is & (3+n)-dimensional & Plank & scale) \end{array}$

Same data can be analyzed in many different ways (Z¢, technicolor, RPV sneutrino etc.)

Conclusions

- Performance of the Tevatron gradually improves, very close now to the design parameters, collected luminosity already ~2 ~ Run I;
- Both CDF and DØ report many new results, significantly improving achievements of Run I;
- New measurements of W, Z⁰ and tt production;
- Promising results in B-physics: lifetimes of B-hadrons, b-spectroscopy. Large collected samples of B_s allow to expect measurements of B_s oscillation and CP-violation in B_s decays;
- Many new results in the searches for new physics, significantly improved limits of Run I;

Tevatron provides exciting possibility to do the excellent physics in the pre-LHC era and to gain the precious experience of work at hadron collider, which can be very useful for LHC.