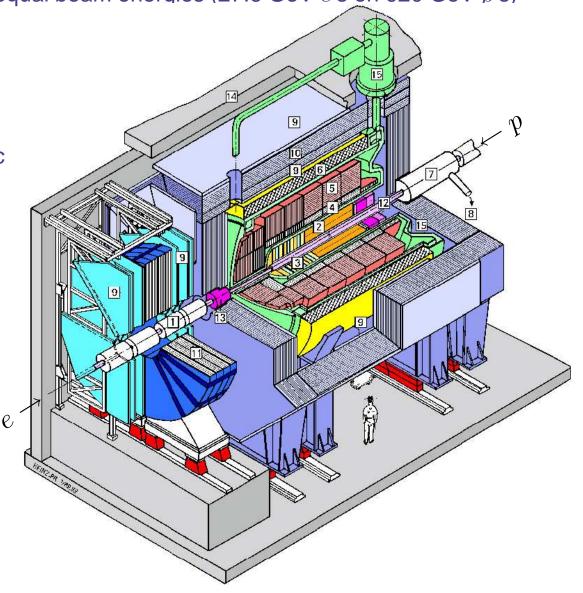
High |t| Diffractive Photoproduction of ho Mesons

Carl Gwilliam

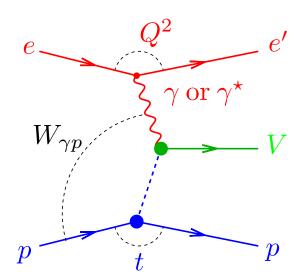
Manchester University

IoP Conference 6th & 7th April 2004

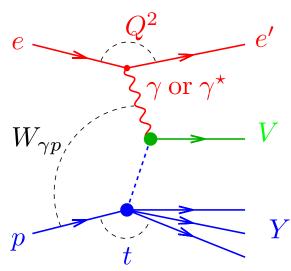

H1 Detector

Asymmetric detector due to unequal beam energies (27.6 GeV e's on 920 GeV p's)

Main Components (2000):


 Tracking provided by 2 concentric drift chambers (CJC1 and 2)

- LAr calorimeter with lead (EM)
 or steel (Had) showering plates
- Instrumented iron (CMD) & drift chambers (FMD) to detect μ's
- Taggers for low Q^2 physics at 8, 33 and 44 m in e direction



Diffractive Vector Meson Production at HERA

Elastic

Dissociative

Proton dissociation dominates at large |t|

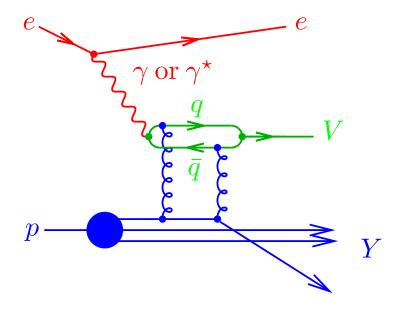
 Q^2 Virtuality of the γ^\star $W_{\gamma p}$ CoM energy of the γp system y Fraction of E_e taken by $\gamma^{(\star)}$ t (4 momentum transfer at the p vertex) 2 V

$$\sim 0 < Q^2 < 100 \, {\rm GeV^2}$$

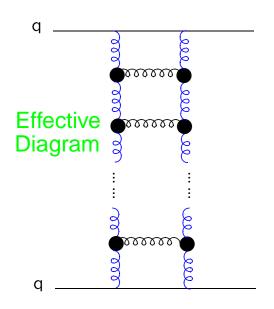
$$20 < W_{\gamma p} < 290 \,\text{GeV}$$

$$\sim 0 < y = W_{\gamma p}^2 / s < 0.84$$

$$\sim 0 < |t| < 30 \, {\rm GeV^2}$$


$$\rho^0$$
, ω , ϕ , J/ψ , $\psi(2s)$, $\Upsilon(1s)$

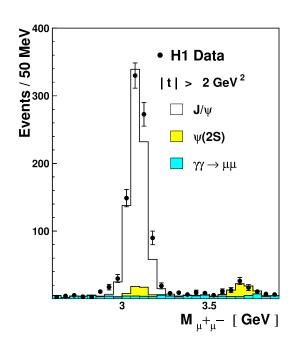
⇒ Simultaneous probe of several different kinematical quantities

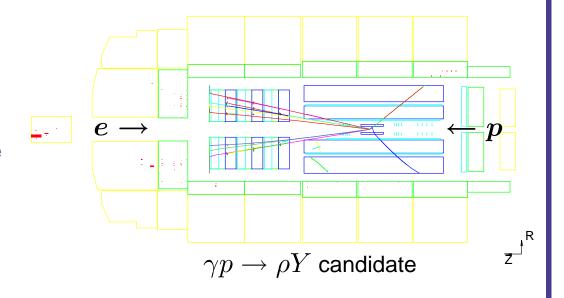

Perturbative QCD

Calculations require hard scale \Rightarrow possibilities are: M_V^2 , Q^2 , |t|

Lowest Order Exchange

Higher Order Exchange


- 1. Photon fluctuates into $q\bar{q}$ pair
- 2. Lowest order exchange = 2 gluons
- 3. Meson wavefunction is needed to form $V \Rightarrow \text{Effective gluon ladder ("QCD Pomeron")}$
- Evolution: a. DGLAP $\Rightarrow \sum_n \alpha_s^n \log^n(Q^2)$
 - b. BFKL $\Rightarrow \sum_{n} \alpha_{s}^{n} \log^{n}(1/x)$


High |t| vector mesons \Rightarrow ideal place to study BFKL dynamics

$\textit{High}\ |t|\ \textit{Vector Meson Photoproduction}$

Two prong vector meson decay signature

- \Rightarrow reconstruct |t| from P_T of tracks Typically energy deposits in fwd direction Incoming e scattered through small angle
- ⇒ Not in main detectors (can be tagged)
 - ⇒ Clean experimental signature!

Non-resonant background at large $\left|t\right|$ is small

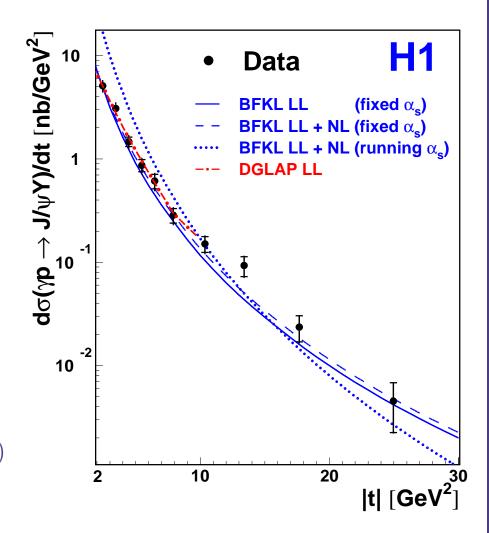
Small contribution from $\psi(2s)$ vector meson

 \Rightarrow Backgrounds at large |t| are small!

Heavy J/ψ Photoproduction at High |t|

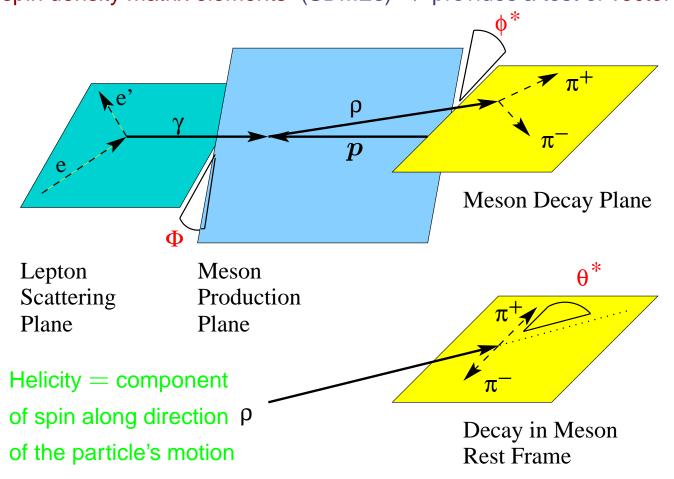
$$J/\psi \to \mu^+\mu^-$$
 using $\mathcal{L}=78~{\rm pb}^{-1}$ with $Q^2<1~{\rm GeV^2}$ (untagged)

|t| dependence:


Probes region $|t|>M_{J/\psi}^2$ for the first time

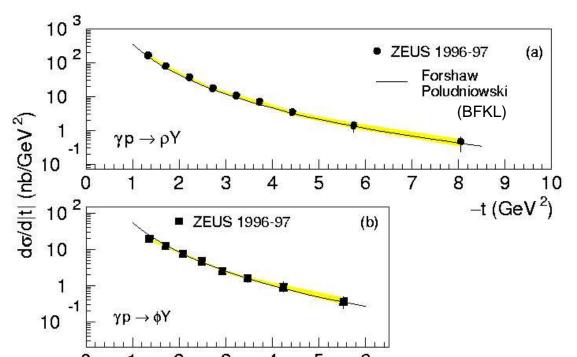
Large |t| dependence: $\frac{d\sigma}{dt} \sim |t|^{-n}$

$$\Rightarrow n_{J/\psi} pprox 3.00 ext{ for } |t| > 3.5 ext{ GeV}^2$$


Fixed α_s BFKL models well describe the data But prescription for running $\alpha_s \Rightarrow$ steeper |t|

DGLAP describes data where valid $(|t| \leq M_V^2)$

Helicity Studies: Testing the Meson WF


Perform a boost into γp CoM frame \Rightarrow can measure angular decay distributions (θ^* , ϕ^* & Φ) Extracting "spin density matrix elements" (SDMEs) \Rightarrow provides a test of vector meson WF!

Heavy J/ψ consistent with SCHC \Rightarrow Simple meson WF assumptions appear satisfactory Lighter ρ violates SCHC (s channel helicity conservation) \Rightarrow more complicated WF needed?

Light Vector Meson Photoproduction at High $\left|t\right|$

ZEUS have measured ρ & ϕ using $\mathcal{L}=25~\mathrm{pb^{-1}}$ with $Q^2<0.02~\mathrm{GeV^2}$ (tagged)

|t| dependence:

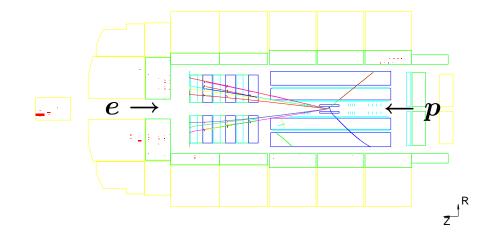
Large |t| dependence: $\frac{d\sigma}{dt} \sim |t|^{-n}$ $\Rightarrow n \sim 3$ for both ρ & ϕ

BFKL describes $\left|t\right|$ dependence well

(using only simple vector meson WF)

Predictions for the full "lightcone" VM wavefunctions have recently become available

(These are necessary to simultaneously describe the high $\left|t\right|$ behaviour and SDMEs)


Light VMs can provide important information on these as yet unmeasured WFs!

High |t| ho Event Selection

2000 data $\Rightarrow \mathcal{L} \approx 48 \text{ pb}^{-1}$

Photoproduction: $\gamma p \to \rho Y$

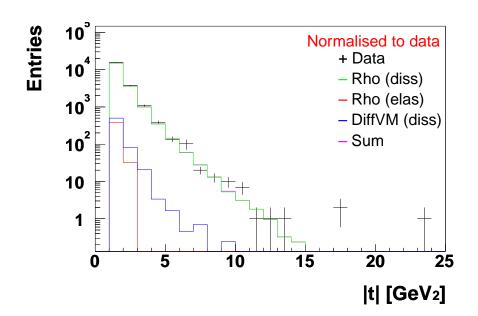
Decay: $\rho \rightarrow \pi^+\pi^-$ (~100%)

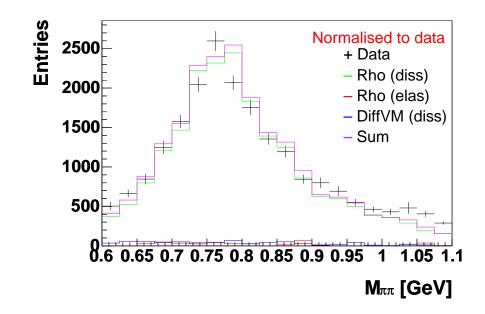
Cuts:

- 1. Photoproduction with e' detected in 44 m tagger $\Rightarrow Q^2 < 0.01~{\rm GeV^2}$ $\Rightarrow 70 < W_{\gamma p} < 115~{\rm GeV}$
- 2. Two good oppositely charged tracks (one with $P_t > 0.4 \,\mathrm{GeV}$ to fire trigger)
- 3. Both must be detected within the central region ($20 < \theta < 160^{\circ}$)
- 4. $|t|>1~{\rm GeV}^2$ (dissociative) where $|t|\approx P_{t,\rho}^2$ in photoproduction
- 5. Require $\Delta \eta > 2$ for diffractive processes $(\eta = -\ln\left(\tan\frac{\theta}{2}\right))$
- 6. No neutral cluster with energy above $0.4~{
 m GeV}$ (noise level)
- 7. Mass cuts: $0.6 < M_{\pi\pi} < 1.1 \text{ GeV}$ and $M_{KK} > 1.04 \text{ GeV}$ $(\phi \to K^+K^-)$

Number of events selected ~ 21000

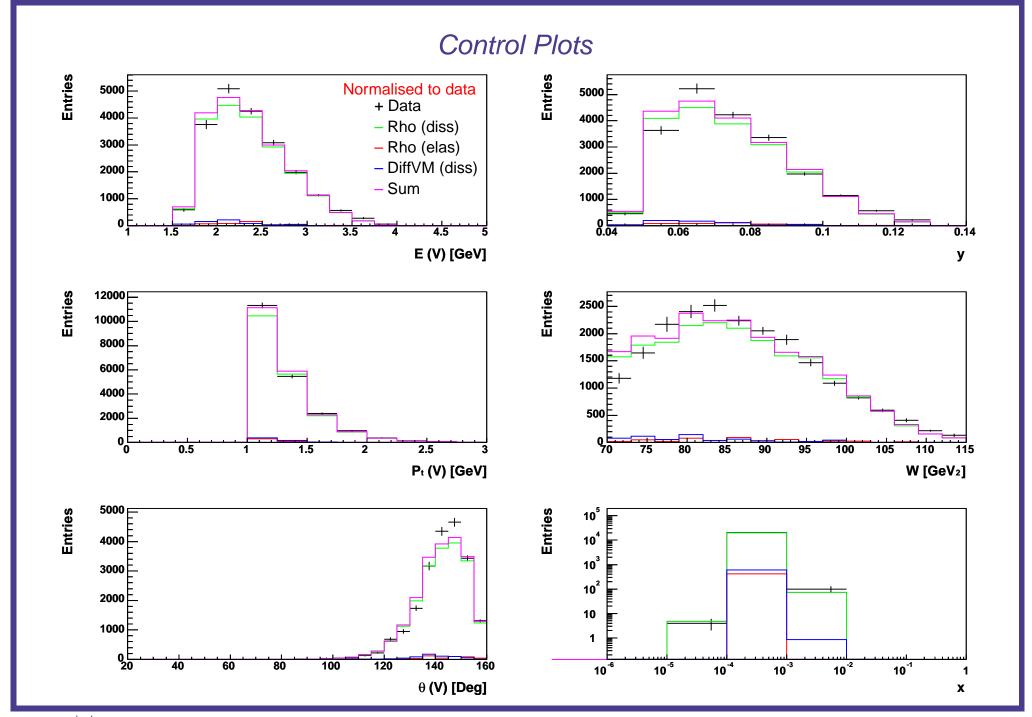
$M_{\pi\pi}$ and |t| Distributions


Invariant mass $(M_{\pi\pi})$:


DiffVM uses a non-rel BW for ρ line shape

⇒ Convert to a relativistic BW distribution

Incorporate skewing effects (Ross-Stodolsky)


 \Rightarrow Accounts for non-resonant π production

|t| slope:

MC generated with a shallow |t| slope \Rightarrow Produces more statistics at high |t| Has been re-weighted to describe the observed |t| distribution of the data

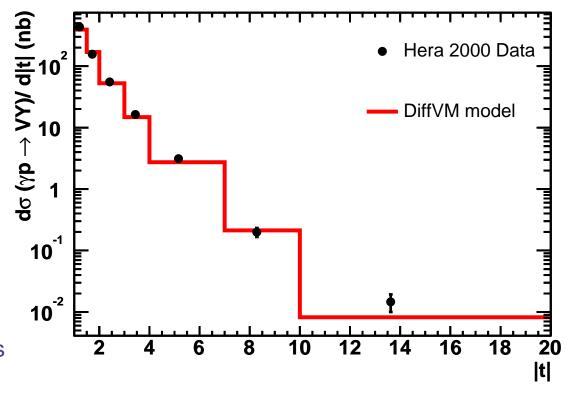
Preliminary Cross Section

 γp cross section:

$$\frac{d\sigma(\gamma p \to \rho Y)}{d|t|} = \frac{1}{F(y,Q^2)} \frac{d\sigma(ep \to \rho Y)}{d|t|}$$
$$= \frac{1}{F(y,Q^2)} \frac{N_{data}(t)}{\mathcal{L}A\Delta t}$$

Weizsäcker-Williams flux:

$$F(y,Q^2) =$$
 Correction for effective γ flux = $\frac{\alpha}{2\pi} \log \left(\frac{Q_{max}^2}{Q_{min}^2} \right) \left[1 + (1-y)^2 \right] \log \left(\frac{y+dy}{y-dy} \right)$


Prescaled luminosity: $\mathcal{L} \approx 23 \ \mathrm{pb}^{-1}$

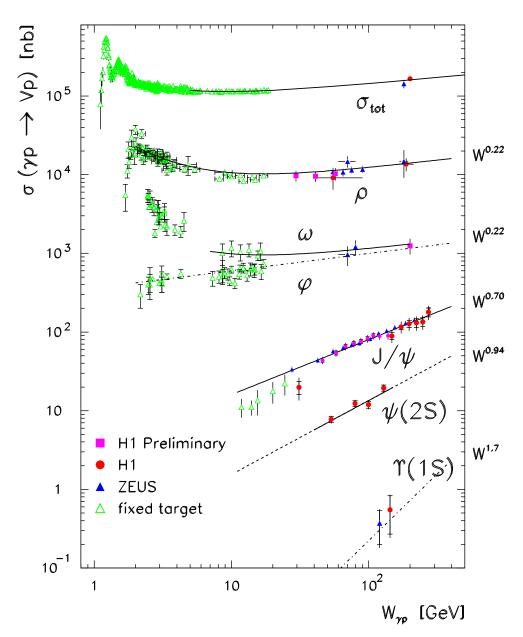
Included:

- 1. Acceptance correction (A)
- 2. Background subtractions
- 3. Bin centre corrections

MC tuned to describe |t| dependence

Still to do: Trigger efficiency corrections

Summary


General:

- ullet High |t| VMs are the ideal place to study BFKL dynamics
- Predictions for full "lightcone" VM wavefunction now available
- Light VMs provide information on these as yet unmeasured WFs
- Clean experimental signal with low backgrounds

Analysis:

- ullet A sample of \sim 21000 ho events $(|t|>1~{
 m GeV}^2)$ selected
- ullet Initial measurement of differential cross section with |t|
- Measurement of SDMEs will test light meson WF assumptions
- ullet Intend to extend analysis to look at ϕ mesons in addition

Elastic Vector Meson Photoproduction

Elastic and photoproduction

 \Rightarrow Both |t| and Q^2 small

Light Vector Mesons (ρ, ω, ϕ) :

Observed dependence $\sigma \sim W^{0.22}$

 \Rightarrow Consistent with soft IP expectation which comes out of Regge theory

Heavier Vector Mesons $(J/\psi, \psi(2s))$:

Steeper rise in cross section observed

 \Rightarrow Need something in addition to soft IP

What about QCD?

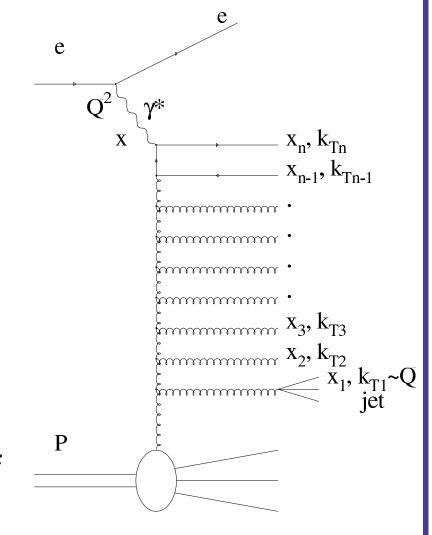
BFKL & DGLAP Evolution

1. DGLAP LL: sums terms in $\alpha_s^n \log^n(Q^2)$

Strong k_T ordering: $k_{T,i}^2 \ll k_{T,i+1}^2 \ll \ldots \ll Q^2$

Weak long. mom ordering: $x_i > x_{i+1} > \ldots > x$

Used to evolve quark and gluon PDFs in Q^2


Fails at low x!

2. BFKL LL: sums terms in $\alpha_s^n \log^n (1/x)$

No ordering in $k_T \Rightarrow$ "random walk" . . . but . . .

Strong long. mom ordering: $x_i \gg x_{i+1} \gg \ldots \gg x$

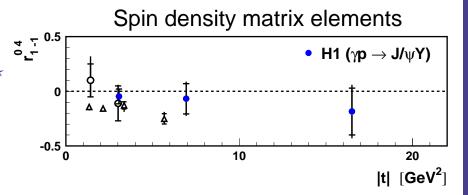
Both predict fast rise in cross section with ${\cal W}$

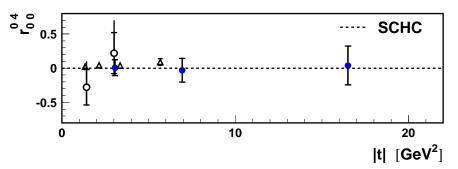
High |t| vector mesons \Rightarrow ideal place to test BFKL dynamics

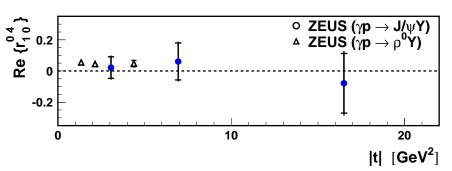
Helicity in High |t| J/ψ Photoproduction

Untagged electron:

Can only measure 2 angular distributions θ^\star & ϕ^\star


⇒ Provides access to 3 indep linear combos of "spin density matrix elements (SDMEs)"


s channel helicity conservation (SCHC)


- ⇒ Vector meson retains helicity of photon
- ⇒ All 3 combos of SMDEs predicted to be zero

 J/ψ data consistent with zero & therefore SCHC

⇒ Simple WF assumptions appear satisfactory

In contrast ρ is **not** consistent with zero \Rightarrow SCHC is **violated** \therefore more complicated WF needed?

Background Processes

Several possible processes can fake a signal of two oppositely charged tracks:

$$\begin{array}{ll} \phi \to K^+K^- & \text{Two charged kaons fake pions and therefore } \rho \\ \omega \to \pi^+\pi^-\pi^0 & \text{Neutral pion undetected \& charged pions fake } \rho \\ \rho' \to \rho^\pm\pi^\mp\pi^0 & \text{Opp charged pions from two-stage decay fake } \rho \\ \hookrightarrow \pi^\pm\pi^0 & \text{and both neutral pions remain undetected} \end{array}$$

Also treating small ($|t| \leq 3$) elastic ρ contribution as a background