Measurement of σ .Br for $p\bar{p} \to XZ \to X\mu^+\mu^-$ at $\sqrt{s} = 2$ TeV using the DØ detector.

Emily Nurse

IOP April 2004

• THE TEVATRON : $p\bar{p}$ collisions at $\sqrt{s}=2$ TeV

• DØ: a general purpose detector

Emily Nurse

- benchmarks understanding of experiment
- "Standard Candle" for all high momentum leptonic processes
- electroweak precision measurements such as W width, τ_W
- compare production mechanism with QCD predictions

σ .Br measurement

$$\sigma.\mathrm{Br} = \frac{\mathrm{N_{cand}}(1 - f_{bckg})}{\epsilon_{\mathrm{Z}/\gamma^*} \int L}$$

- 1. Count the number of candidate events, N_{cand}
- 2. Calculate total efficiency of selection criteria and detector acceptance, $\epsilon_{\mathbf{Z}/\gamma^*}$
- 3. Estimate remaining background fraction, f_{bckg}
- 4. Calculate luminosity, $\int L$

$$\longrightarrow \sigma.\text{Br }((Z/\gamma)^* \to \mu^+\mu^- \text{ (M}_{\mu\mu} > 30 \text{ GeV)})$$

5. Correct for events with Z/γ^* propagator

$$\longrightarrow \sigma. \text{Br } (Z \to \mu^+ \mu^-)$$

EVENT SELECTION

acolinearity and dca cuts to eliminate cosmics

14790 candidate events

ISOLATION

2 of the following 4 cuts are required to pass:

- Calorimeter isolation for μ_1
- " for μ_2
- Central tracker isolation for μ_1
- " for μ_2

High efficiency:

$$\epsilon_{\rm isol} = 0.994 \pm 0.003$$

Low background:

$$f_{\rm bb} = 0.006 \pm 0.003$$

CENTRAL TRACKING EFFICIENCY

Select a sample of pure $(Z/\gamma)^* \to \mu^+\mu^-$ events without the requirement that central tracks are found for both muons.

Average efficiency: $\epsilon_{\text{track}} = 0.950 \pm 0.002$

MUON CHAMBER RECONSTRUCTION AND TRIGGER EFFICIENCIES

Select a sample of pure $(Z/\gamma)^* \to \mu^+\mu^-$ events without the requirement that one of the muons is reconstructed in the muon chambers

DETECTOR ACCEPTANCE AND EFFICIENCIES

Paul Telford, University of Manchester

- All reconstruction and trigger efficiencies are measured in ϕ / η bins.
- Input them into a Parameterised Monte Carlo (using Pythia generator) which then 'accepts' a candidate muon according to

$$\varepsilon_1(\eta,\phi) \times \varepsilon_2(\eta,\phi) \times \dots$$

- Monte Carlo outputs an acceptance, $\epsilon_{\rm MC}$, including kinematic cuts, all inputted efficiencies and the geometrical acceptance of the detector.
- Uncertainty on ϵ_{MC} due to uncertainty on inputted efficiencies is deduced by varying them in a given bin by Gaussian distributions with widths equal to their uncertainties. Procedure repeated a number of times.

DATA - MONTE CARLO COMPARISONS

BACKGROUNDS

Remaining fractional background from $b\bar{b}$, cosmic rays and $Z \to \tau^+\tau^-$:

$$f_{bckgd} = 0.013 \pm 0.019$$

MAIN UNCERTAINTIES

- Luminosity $\rightarrow 6.5\%$
- Uncertainty due to PDFs used in acceptance $\rightarrow 1.7\%$
- Systematic due to statistical limitations on size of η / ϕ bins when input to Monte Carlo \to 1.5%

 σ .Br

With an integrated luminosity of 147.8 pb⁻¹ \rightarrow

$$\sigma.\text{Br}_{Z/\gamma} = 370.0 \pm 4.4(\text{stat}) \pm 9.2(\text{syst}) \pm 23.9(\text{lumi})$$
 pb

Correct for Z/γ^* interference and pure γ^* terms using the ratio,

$$R_{\sigma} = \sigma_Z/\sigma_{Z/\gamma^*} = 0.780 \pm 0.017$$

taken from Pythia \rightarrow

$$\sigma.{\rm Br}_Z = 288.6 \pm 3.4 {\rm (stat)} \pm 7.2 {\rm (syst)} \pm 18.8 {\rm (lumi)}$$
 pb

NNLO SM prediction, C. Hamberg, W. van Neerven and T. Matsuura, Nucl. Phys. B359 (1991) 343.