
German.Cancio@cern.ch ELFms meeting, 2/3/04

German Cancio, 2/3/04

Proxy servers in CERN-CC



German.Cancio@cern.ch ELFms meeting - n° 2

The problem

Service availability on all (quattor managed) CC nodes

Base installation (Anaconda server->client)

Software packages (SWRep->SPMA)

CDB configuration profiles (CDB->CCM/NCM)

User/password information (Regis server->client)

How to offer a reliable, redundant and load balanced access



German.Cancio@cern.ch ELFms meeting - n° 3

Current deployment architecture
LXSERV

linuxsoft/AIMS

DNS-load balanced HTTP

DNS load balanced NFS/(HTTP)

M

M

M’

H H H

rsync

mirror

backend

frontend



German.Cancio@cern.ch ELFms meeting - n° 4

Problems with current solution

Scalability is limited

Bottlenecks eg. network and switches

Efficiency

Server->server: All contents need to be replicated (disk size, 
speed)

Server->client: Multiplication of identical transfers

Reliability

Low ratio server/clients (few servers need to cope with 1000’s of 
clients)

Requires smart and quick load balancing in case a server becomes
unavailable (not always there – eg. swrep.cern.ch round robin)



German.Cancio@cern.ch ELFms meeting - n° 5

Proxies

Proxy caching: concepts

Proxy: Intermediary between client/server interactions

Caching proxy: Acts as a transparent store for server objects

Caching proxy types

Transparent: client is completely unaware of proxy (same service 
endpoints). Requires IP routing modifications (eg. ipchains or 
switches reconfig)

Forward (or ‘cient-side’): client makes server requests via 
specified proxy server. Caching typically done on (or near to) the 
client, to reduce outgoing connections

Reverse (or ‘server-side’): client application talks to front-end 
server(s), which forwards requests to back-end server(s).

Reverse proxy easiest to set up, as only requires client 
reconfiguration



German.Cancio@cern.ch ELFms meeting - n° 6

Proxies (II)

Proxy hierarchies

Possible to have chains of proxies, which can be of different type

Protocol types

Protocols eg. HTTP(S), FTP used within stateless services

Proxy implementations:

Apache (via plug-in modules 
(mod_proxy/mod_rewrite/mod_expire)

Squid

Apache used for tests

+ standard, and reliable 

clear and flexible configuration

no functionality duplication (can be used as proxy and non-proxy)



German.Cancio@cern.ch ELFms meeting - n° 7

Data caching

Invariant objects
Same object ID (file name) -> same contents

No expiry (excepting object deletion). Lifetime = ∞

Example: Software packages (RPM’s), Linux base install images (in 
principle…)

Dynamic objects
The same object may change over time

Expiry lifetime can be < ∞, or even 0

Requires server revalidation check after expiry

Example: CDB XML profiles, passwd files

Cannot be cached: cgi scripts, ASP pages

Objets on a proxy can be forced to expire independently of their 
remaining lifetime

Useful for regular garbage cleanup (..and unexpected updates)

Can be done per object type or location



German.Cancio@cern.ch ELFms meeting - n° 8

Proxy architecture
LXSERV

linuxsoft/AIMS

DNS-load balanced HTTP

DNS load balanced HTTP

M

M

M’

H H H

backend

frontend



German.Cancio@cern.ch ELFms meeting - n° 9

Proxy support

quattor client/servers are by design reverse proxy compatible

Stateless, no server-based processing or queries, in order to work 
with any proxy/replication system

Server location is configurable per client

Anaconda (Linux installer) as well (using HTTP installs)

Per-node KS file contains server location

SPMA enhanced support (since v1.9.1):

Multiple proxy servers – uses the first one available, if none it 
reverts to the original package SW repository locations

Forward proxies (via delegation to syspackager)

Configurable via CDB

Other applications eg. regis client, GPG keypairs compatible as 
well (check if location is configurable)



German.Cancio@cern.ch ELFms meeting - n° 10

apache configuration

Apache set up as reverse proxy on LXSERV front end and head nodes.

Most important settings:
Load and enable mod_proxy (libproxy.so)

Enable cache (/var/cache/httpd), size ~ 6GB

Cache garbage collection runs every 4h

Cache max expiry: 24h

Set father server for each proxy directory (/xml,/swrep, /redhat, /regis,..)

Force complete file download in case of partial requests (eg. rpmt/SPMA asking for 
rpm header information)

LXSERV master (not a proxy server!)
Set expiry type (via mod_expire: ExpiresActive and ExpiresDefault rules) for dynamic 
objects (/regis, /encrypted/sensitive-files, /xml). Set to ‘now’, but could be fine-
tuned

Enhanced verbosity:
Add X-Cache header contents into HTTPD log file (cache operations, HIT and MISS)

Enable server-status pages

No changes done to linuxsoft (to be discussed with ADC). No merge 
SWRep+Linuxsoft needed anylonger.



German.Cancio@cern.ch ELFms meeting - n° 11

Current experience

LXSERV front-end nodes: proxy in production since ~ 2w, no problems 
experienced

Lxserv01, 02, 03 pointing to lxservb01

SWRep, XML profiles, regis

Rsync disabled:
speedup of 50% on complete CDB recompilation
SWRep nightly upload speedup (negligible)

Lxservb02 not in proxy mode since not everything is backed up on lxservb01

Head nodes: tests on lxc1m603
ccconf DNS alias (XML), lxservb01 and lxserv01 (SWRep), linuxsoft (base 
installation)

Complete reinstallation of test node only using lxc1m603 as proxy

Lxplus001,lxb0001 using lxc1m603 as proxy since 2w

Server interruptions in the proxy chain:
If cached and invariant -> OK

(dynamic AND expired) OR not cached -> proxy error. Not problematic in case of 
CCM requests, as local cache exists



German.Cancio@cern.ch ELFms meeting - n° 12

Remaining issues, next steps

Making remaining services head-node aware in terms of cfg
Regis

NCM component for CCM configuration

KSGenerator

Apache NCM configuration component

Possible extension: adding failover capabilities to other services than SPMA …
Improve SPMA failover procedure (currently using ping)

Implement SPMA retry

.. or provide DNS aliases to redirect head node requests

Entering client->head node info into CDB, including failovers
Requires head nodes to be known

Will require adapting CDB schema to accommodate other head node info into CDB

Operator alarms and procedures for head nodes
Single-big-point of failure -> many-small-point-of failures 

Future extensions, eg. dynamic experiment software distribution


