

Beam condition monitoring

- protecting LHC experiments
- tests of CVD diamond sensors

Radiation monitors for the LHC experimental caverns

various active and passive sensors

PH: M. Glaser (TA1), A. Macpherson (CMM), A. Oh (CMD), T. Pritchard (CMM) TS-LEA-CMS: L. Fernández-Hernando, F. Ravotti, E. Tsesmelis, Ch. Ilgner

The Beam Condition Monitor (BCM)

Outline:

Purpose of the BCM:

Beam condition monitor (BCM)

Accident scenarios

CVD diamond

Test results

Layout (CMS)

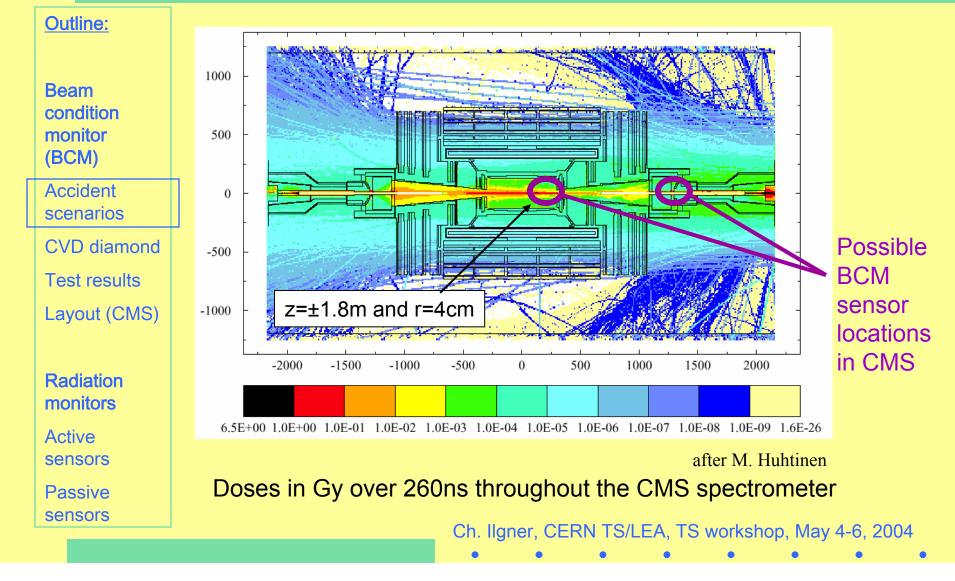
Radiation monitors

Active sensors

Passive sensors

provide real-time radiation monitoring within CMS and ATLAS (others are welcome) to detect and initiate protection procedures for detector subsystems at the onset of beam instabilities and accidents

Goal:


provide monitoring information in the time scale of the LHC beam structure of 25ns \rightarrow beam dump request, detector HV ramp down

Sensor candidate:

CVD diamond close to beam pipe, at a distance of about 1.5m from the interaction points. Fast electronics outside the main volume

BCM: accident scenarios – unsynchronized beam abort

BCM: accident scenarios – resulting doses

Outline:

Active

sensors

Passive sensors

Beam condition monitor	Loss type	Dose per event (on inner Si strip layer of CMS tracker)	Flux factor	ratio	
(BCM) Accident scenarios	Unsynchronized beam abort	10 mGy	1	1	
CVD diamond Test results	One 7 TeV proton lost on TAS	15 pGy	10 ¹²	1500*	
Layout (CMS)	One 450 GeV proton lost on TAS	1 pGy	10 ¹²	100*	
monitors		after A. Macpherson			

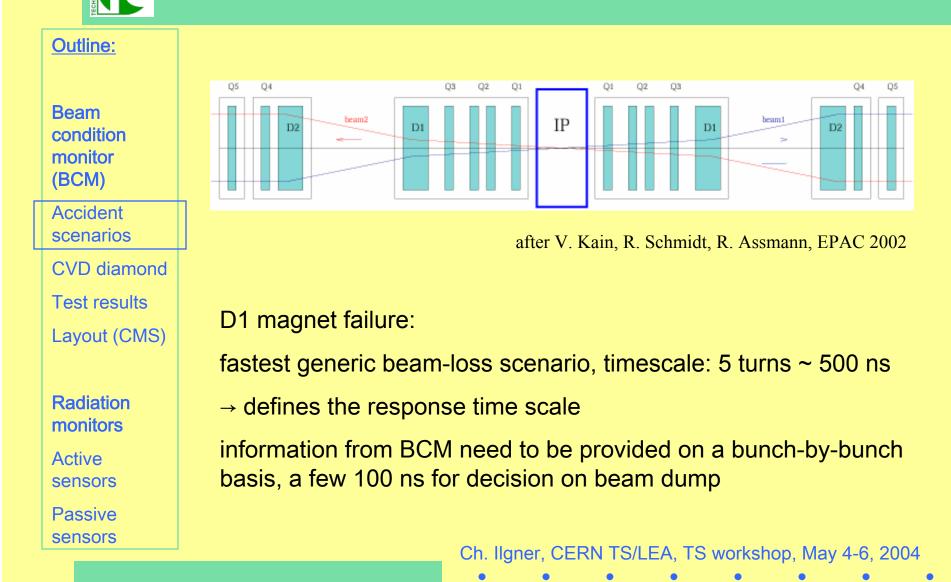
after A. Macpherson

Unsynchronized beam abort : 10¹² protons lost in IP5 over 260 ns

Dose rates up to 1000 times higher if consecutive full bunches lost

sensors

BCM: accident scenarios – time scales


Outline:	Name	Operation mode	Loss type	Loss location	ΔT/turns
Beam	D1 warm	collision	local	triplet/collimator	5
condition monitor	damper	injection	local	arc/triplet	6
(BCM)	warm quadrupoles	any	distributed	collimator	18
Accident scenarios	dump septum	any	local	diluter kicker/septum	35
CVD diamond	warm orbit corrector	aollision	local	triplet/collimator	55
Test results	RF (?)	any	local	arc/triplet/septum	55
Layout (CMS)	D1 warm	injection	local	arg/triplet/collimators	120
Radiation	D1 Cold	collision	local	triplet/collimator	220
monitors Active	warm orbit corrector	injection	local	arc/triplet/collimator	250
sensors	MB quench	collision	local	triplet/collimator	280

•

•

Ch. Ilgner, CERN TS/LEA, TS workshop, May 4-6, 2004

BCM: accident scenarios – D1 magnet failure

- •

BCM: CVD diamond

Outline:

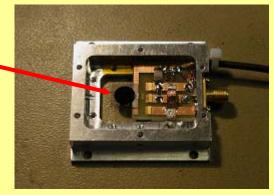
Beam condition monitor (BCM)

Accident scenarios

CVD diamond

Test results Layout (CMS)

Radiation monitors


Active sensors

Passive sensors

CVD (chemically vapor deposition) diamond:

- promising BCM sensor candidate
- 1 x 1 cm polycrystalline material, typically 300 µm thick
- operation similar to Si, but charge traps need to be filled up
- radiation hard

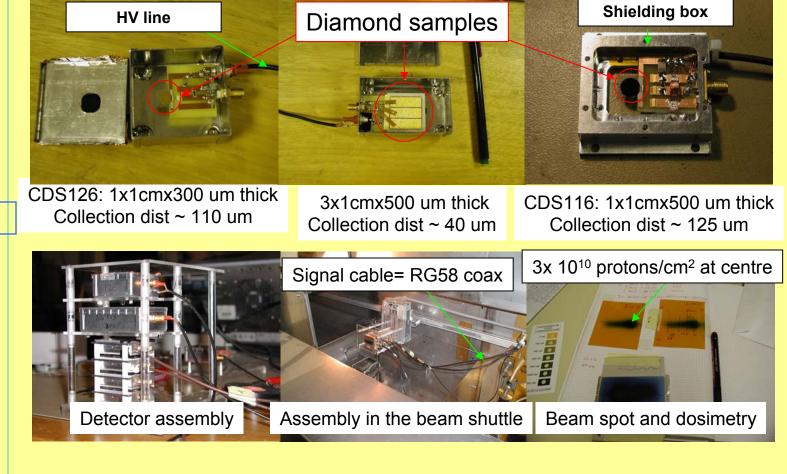
metallization, 8mm in diameter

BCM: CVD diamond

Outline:

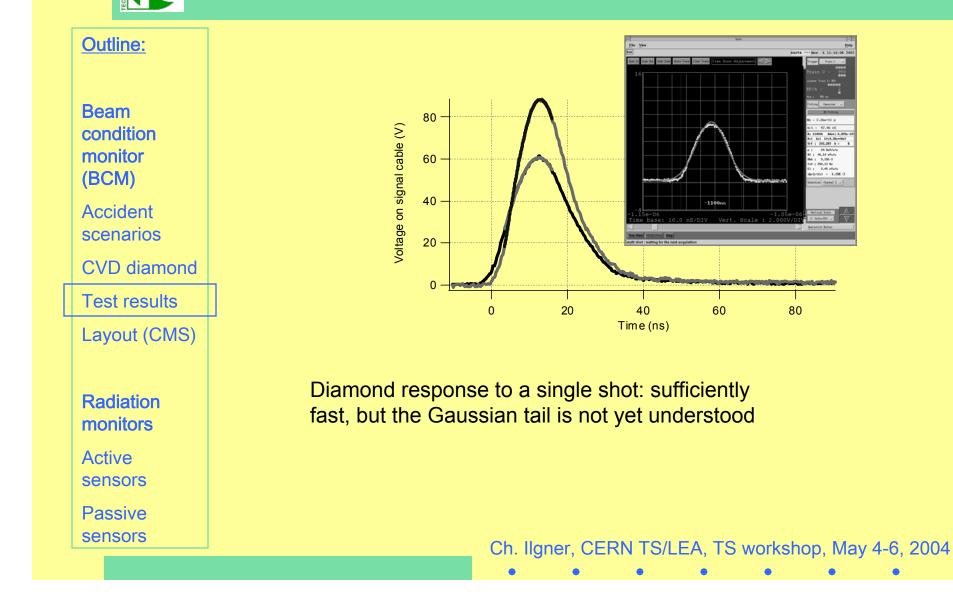
Beam condition monitor (BCM)

Accident scenarios


CVD diamond

Test results Layout (CMS)

Radiation monitors


Active sensors

Passive sensors

- •
- •

BCM: beam-test results

- •
- •

BCM: beam-test results

Outline:

(charge) collection distance:

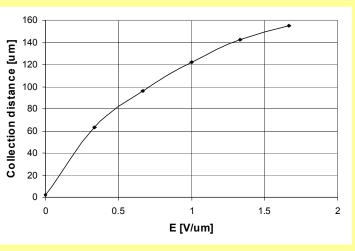
e:
$$\delta = \frac{Q_C}{Q_G} \cdot d$$
, a quality parameter

Beam condition monitor (BCM)

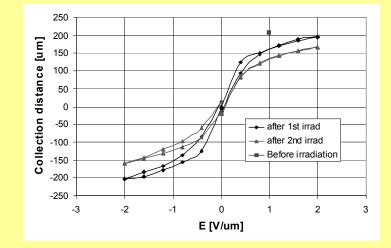
Accident scenarios

CVD diamond

Test results


Layout (CMS)

Radiation monitors


Active sensors

Passive sensors

 δ as a function of the electric field for two CVD diamond samples:

300 µm thick CVD, unirradiated

500 μ m thick CVD, unirradiated and after 10¹⁵ and additional 2.8 x 10¹⁵ protons/cm²

BCM: beam-test results

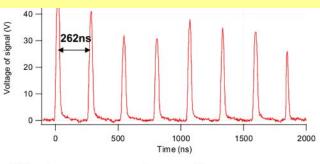
Outline:

Beam condition monitor (BCM)

Accident scenarios

CVD diamond

Test results

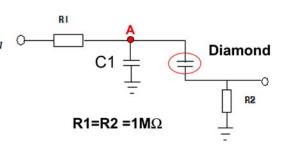

Layout (CMS)

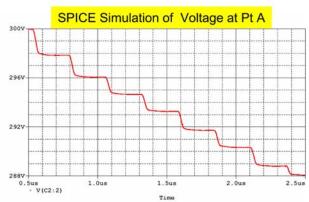
Radiation monitors

Active sensors

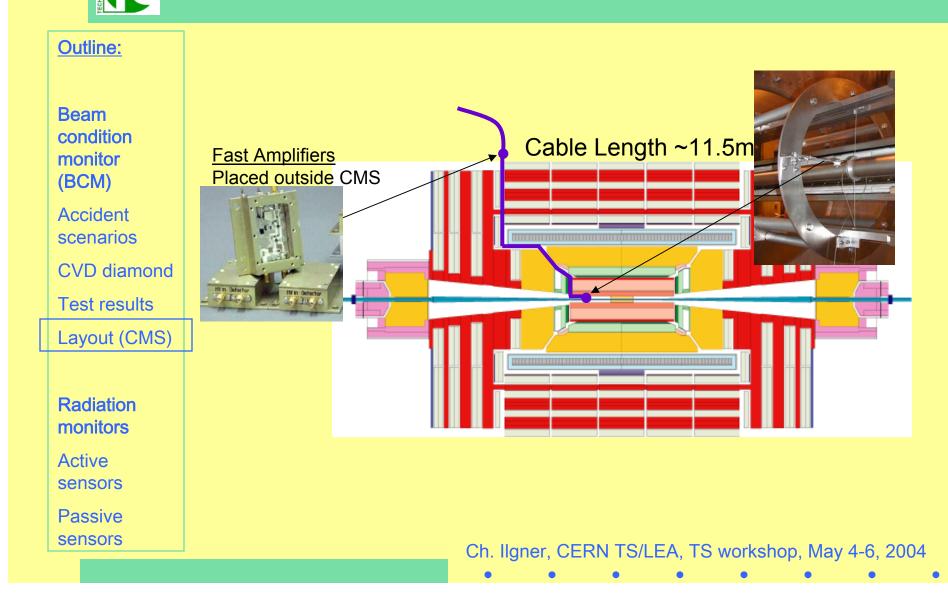
Passive sensors

multiple bunches




C1 acts as a reservoir capacitor =>The larger the value the longer the bias field on the can be maintained. =>Bunch amplitude variation is real

C1(CDS126)=15 nF


C1 is sufficiently large to maintain bias across the diamond for the 8 bunches.

C1R1 time constant ~15 ms \Rightarrow recharging of C1 is slow compared to bunch structure

Radiation monitors: active sensors

Outline:

RadFET dosimeters

Beam condition monitor (BCM)

Accident scenarios

CVD diamond

Test results

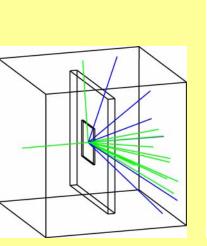
Layout (CMS)

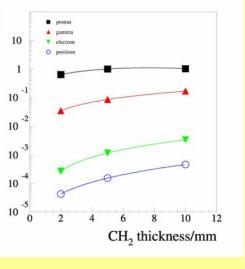
Radiation monitors

Active sensors

Passive sensors

• p-channel MOS transistors used to measure the ionizing dose via a charge build-up in the SiO_2 layer of the device.


• growth of the transistor threshold voltage V_{th} is proportional to the deposited dose when a constant current passes through the device


• integrating dosimeters for long-term measurements

GEANT4 simulation:

polyethylene sensor housing influences the detector response

agrees with simulation results

Ch. Ilgner, CERN TS/LEA, TS workshop, May 4-6, 2004

relative abundance (%)

Radiation monitors: active sensors

Outline:

Beam

(BCM)

Accident

scenarios

CVD diamond

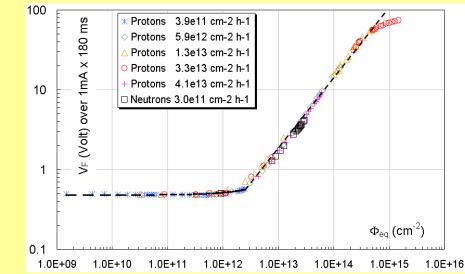
Layout (CMS)

Test results

Radiation

monitors

Active


sensors

Passive sensors

condition monitor

p-i-n diodes

Radiation causes displacement damage in the bulk silicon material, as well as macroscopic effects, like an increase in Si resistivity and leakage current, both proportional to the received particle fluence

Irradiation response of the OSRAM BPW34F diodes that were tested in forward bias operation applying a current pulse of 1mA over 180ms for the readout.

Radiation monitors: passive sensors

Outline:

Beam condition monitor (BCM)

Accident scenarios

CVD diamond

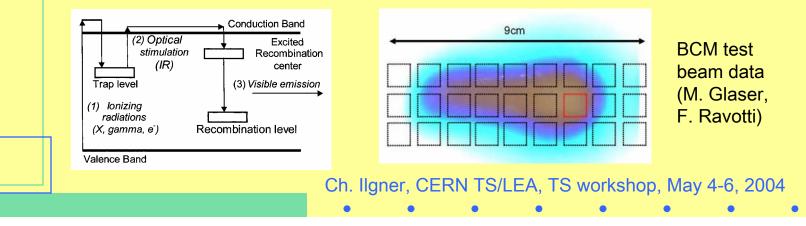
Test results

Layout (CMS)

Radiation monitors

Active sensors

Passive sensors


Long-term radiation monitoring, several techniques are available:

- polymer-alanine (PAD)
- TLD (thermoluminescence dosimeter)
- radio-photo luminescent (RPL) dosimeters

 \rightarrow formation of stable free radicals (PAD) or color centers (RPL) after irradiation. For readout, they have to be removed. The necessary readout instrumentation and know-how is already in use at CERN (SC/RP department).

• OSL: optically stimulated luminescence: used in BCM test beam

development of an automatic readout system in progress

•

CVD diamond

is a promising candidate for an LHC beam-condition monitor, capable of withstanding the radiation doses and particle fluence rates such a system will have to deal with.

Its response is sufficiently fast to react on a bunch-by-bunch basis.

A variety of active and passive radiation sensors

is being investigated in collaboration with PH/TA1, in view of the complicated radiation environment in the LHC experimental caverns.