

Cornell University Laboratory for
Elementary-Particle Physics

Cornell digital LLRF system

S. Belomestnykh

LLRF05 workshop CERN, October 10, 2005

Outline

□ CESR RF system

- □ Cornell ERL RF system requirements
- **□** Motivations for digital LLRF
- □ System description
- □ Operational experience in CESR
- □ JLab test results
- □ Second generation: LLRF for ERL
- **□** Summary

CESR RF system

 CESR is a *e***⁺***e***- storage ring operating in two regimes: as a collider and as a synchrotron light source**

 Four superconducting single-cell RF cavities

 Two cavities are driven by one klystron in parallel

High beam loading [→] **low loaded** *Q* **factor**

LLRF05 workshop CERN, 10/10/2005

S. Belomestnykh Cornell digital LLRF system

Cornell ERL prototype

Cornell ERL RF systems

Low level RFKlystr WR650 circulator 120 kWCWBuncher cavity 2-cell SC injector cavity #1 **ERL Injector RF system** Lowlevel RFIOTWR650 circulator 16 kWCW3 dBhybrid

 Three distinct RF systems Buncher RF (single-cell normal conducting cavity): 16 kW CW IOT xmtr, prototype for the linac RF (7-cell SC cavities

 Injector cryomodule RF: 120 kW CW klystron, 2-cell SC cavities

Buncher cavity SC injector cavities SC linac cavities \bullet Frequency [MHz] 1300 1300 1300 1300 1300 1300 1300 Accelerating voltage $[MV]$ $[0.12$ $]$ $[1 \text{ to } 3$ $]$ ≈ 20 0.12 1 to 3 $\overline{}$ 4.6×10^4 to 4.1×10^5 2.6×10^7 (for 25 Hz) 2×10^4 *Q*loaded peak microphonics) 7.9132 120 kWCW \blacksquare \blacksquare WR65 circulator in the circulator Low $F \longrightarrow$ Klystron ty ($\frac{1}{2}$ level RF 8×10^{-3} (bunch length) Ampl. Stability (rms) 8×10^{-3} (bunch length) $\left(9.5 \times 10^{-4}$ (energy fluct.) $\left(3 \times 10^{-4}$ (timing jitter) 0.1º (energy fluct.) **Phase stability (rms)** 0.1° (energy fluct.) 0.1° (energy fluct.) 0.06° (timing jitter)

 \Box

 \Box

 \Box

LLRF05 workshop CERN, 10/10/2005

Motivations

- П **Replace aging analog controls of the CESR RF system with a more modern, easily upgradeable system**
- **Make the new system more flexible as CESR switched from a fixed-energy operation to a multiple-energy regime, which required frequent adjustment of RF control system parameters**
- \Box **The new system is also a "prototype" system for ERL** → **design should be generic enough to be easily adaptable to other applications**
- **Improve diagnostics**
- **Add new features (piezo-tuner controls, HV PS ripple compensation,…)**

System description: Block diagram

The system includes: \Box State machine \Box Vector sum control of two heavily beam-loaded cavities in CESR◻ Trip and quench detectionп Adjustable klystron HV \Box Tuner control (stepping motor and piezo) \Box Feed-forward compensation of the HV PS ripple О Pulsed operation for processing \Box Passive cavity operation \Box **Diagnostics** \Box Link ports (high speed parallel ports) serve for data exchange between digital boards

LLRF05 workshop CERN, 10/10/2005

S. Belomestnykh Cornell digital LLRF system

transmission lines, tuners, mixers,…)

LLRF05 workshop CERN, 10/10/2005

System description: Controller card

- \Box **Very low delay in the control loops**
- \Box **FPGA combines speed of an analog system and the flexibility of a digital system**
- \Box **High computational power allows advanced control algorithms**
- \Box **Both boards have been designed in house**
- \Box **The controller is designed to stabilize I and Q components of the cavity field. The RF signals are converted to IF of 11.9 MHz and then sampled at a rate of 4×11.9 MHz.**
- \blacksquare **Generic design: digital boards can be used for a variety of control and data processing applications**

LLRF05 workshop CERN, 10/10/2005

System description: Controller card boards

Processor board:

- \Box 4 MB of fast static RAM and 1.5 MB of flash memory.
- \Box The DSP is an Analog Devices SHARC ADSP-21160N. The chip serves as the CPU and I/O processor for the board: it performs all tasks that can be run at 100 kHz or slower.
- \Box The FPGA chip is a XILINX VIRTEX-IIXC2V 1000-4. The fast control loops and data acquisition control run in this chip.
- \Box Each ADC (AD6644) channel is provided with 2 MB of buffer memory. Incoming data from the ADC are stored in this ring buffer (1 Megasample each).
- \Box A separate memory buffer is provided for the dual functions of storing data directed to the DACs (LT1668) and for a Look-Up Table for feed-forward constants.

ADC/DAC daughter board:

- П Four 14-bit 65 MHz ADCs and two 50 MHz DACs
- \Box High (74 dB) signal-to-noise ratio

LLRF05 workshop CERN, 10/10/2005

System description: FPGA Software

LLRF05 workshop CERN, 10/10/2005

LLRF05 workshop CERN, 10/10/2005

S. Belomestnykh Cornell digital LLRF system

Opeartional experience in CESR

- П **Digital LLRF system has been in operation at CESR since summer 2004. It is very reliable.**
- 0 **Achieved field stability surpasses requirements.**
- П **System allows easy switch from operation with a loaded** *Q* **of 2×105 at high beam energy to a higher loaded Q (4×105)operation at low beam energy.**
- П **Klystron high-voltage ripple is the dominating field perturbation. Feedforward compensation proved very effective.**
- \Box **Phase fluctuation is dominated by the CESR reference signal noise**

LLRF05 workshop CERN, 10/10/2005

Experiments at JLab

We want to operate ERL at the highest possible loaded *Q* **for the most efficient operation of the RF system. We have brought our system to Jefferson Laboratory to perform a proof-ofprinciple experiments in collaboration with our colleagues. The JLab engineers built all the necessary RF hardware to connect the Cornell digital LLRF system to one of the 7 cell SC cavities in the FEL/ERL accelerator and to one of the 5-cell SC cavities in CEBAF.**

LLRF05 workshop CERN, 10/10/2005

FEL/ERL test results: High Q (1.2×10 8) operation

 \Box Operated the cavity at $Q_l =$ 2×10^7 (75 Hz bandwidth) and 1.2×10^8 (12 Hz bandwidth) with 5 mA energy recovered beam.

 \Box

 \Box

- Had the following control loops active: PI loop for the cavity field (I and Q components); stepping motor feedback for frequency control; piezo tuner feedback for fast frequency control.
- \Box Achieved cavity field amplitude stability of 8×10⁻⁵ (at *O_l*= 2×10⁷) and 1×10⁻⁴ (at $Q_l =$ 1.2×10^8) at 12.3 MV/m.
- \Box Achieved cavity phase stability of 0.02 $^\circ$.
- \Box With active piezo tuner were able to ramp the cavity field to 12 MV/m in less than 0.1 second at Q_l = 2×10⁷ and in less than 1 second at *Q_I*= 1.2×10⁸.
- \Box Only with piezo feedback on could stabilize the cavity field at >10 MV/m.

LLRF05 workshop CERN, 10/10/2005

CEBAF test results: Fighting microphonics

- П. **Increased the cavity loaded Q to 4.2×107 (36 Hz bandwidth) from nominal value of about 2×106 and ran the machine with beam** current up to 4×100 μ A = **400 µA.**
- \Box **The chosen cavity is one of the most microphonically active cavities in CEBAF with the peak detuning more than 1.5 times the cavity bandwidth.**
- **We were able to close the feedback loop and achieved cavity field amplitude stability of 1×10-4 and phase stability of 0.01º at 10 MV/m.**

LLRF05 workshop CERN, 10/10/2005

LLRF for Cornell ERL: System configuration

LLRF for Cornell ERL: Block diagram

Summary

- □ **We have designed and built a digital LLRF control system**
- **The system is based on an in-house developed digital and RF hardware**
- **It features very fast feedback and feed-forward controls, a state machine and extensive diagnostics**
- **The first system has been in 0peration at CESR since summer 2004, surpassing requirements**
- **It was tested at JLab with a high loaded Q cavity and in an energy-recovery regime**
- \Box **The system is generic enough to be suitable for a wide variety of accelerator applications**
- **The second generation is under development for use in the Cornell ERL**

Acknowledgements **The Cornell LLRF development team:** J. Dobbins, R. Kaplan, M. Liepe, C. Strohman, B. Stuhl **Experiments at JLab:** C. Hovater, T. Plawski

and JLab FEL and CEBAF operations staff

LLRF05 workshop CERN, 10/10/2005