

Characterization of SNS Low-Level RF System

Hen gjie Ma

*Mark Champion, Mark Crofford, Kay Kasemir, Chip Piller Lawrence Doolittle, Alex Ratti **

> *e-mail: hengjie@sns.gov Tel: 865-385-7939*

*Oak Ridge National Laboratory * Lawrence Berkeley National Laboratory*

Oct. 10, 2005

- •SNS LLRF digital hardware
- •• System characteristics – frequency / transient response
- •Data buffer features - facilitate operations and R&D
- •Mode of operations – RF turn-on/cavity filling

Current configuration

chip resources used: 50% 20% of logic slices,

30% of RAMBs, 50% of IOBs, 8% of multipliers

Previous VHDL tool-chain

•**A manual process**

•**Lack of simulation at system level**

Present Verilog tool-chain

- •**Automated code generation**
- •**Integrated development process**
- •**Behavioral simulation of system level**

Frequency response

Type I , 2nd + ord er system

$$
G(s) = A \cdot K_p \cdot K_c \cdot \frac{(s + K_i)}{s(s + K_c)} \cdot \frac{K_f}{s + K_f} \cdot \frac{K_k}{s + K_k} \cdot e^{-\tau s}
$$

Constraints:

- 1. Loop delay
	- *A K p K c* [⋅] [⋅] •Loop delay limits gain-bandwidth product :

•Gain-bandwidth limits the maximum usable loop gain

•Loop gain affects system transient response and control error

•Loop delay term adds more poles and zeros to the system transfer function

2. Quantization errors

•Total loop gain comes mainly from the internal digital gain, •Quantization err o r limits the maximum usable digital gain

SNS LLRF: System characteristics

SPALLATION NEUTRO

Nichols Chart for SNSRF

Accelerator Systems Division B ORNL *****CCELERIFY CORNL B ORNL*

SNS LLRF: Issues associated with digital systems

*Accelerator Systems Division Parameters in the contract Hengjie Ma, Oct. 10, 05**ORNL Accelerator Systems Division*

Transient response to step change – NC cavity

Accelerator Systems Division B B B B B B Accelerator Systems Division B B B B B BB<i>B B B B B B B B B B B B B B B

SCL-12a @ 9MV/m response to test rectangular pulse to FF input

- •Closed-loop control bandwidth: [≈]59kHz for critically damped, cavity BW: 0.56kHz
- •Total loop gain tested: ≈ 89, 104 required for critical damping

SCL-12a @ 9MV/m response to 10mA/300us beam pulse

- •Beam rise time: ≈ 10us, feedback action delay time: ???
- •Settling time of proportional feedback control: ≈19.5us
- •Damping ratio: 0.76 ; Peak field error: 0.3% ; Residual error right after settling : 0.12%
- •AFF for beam loading compensation ?

Accelerator Systems Division PHOTERS 10 ORNL ORNL ORNL

LLRF05SNS LLRF : Data buffers facilitate studies and operations

Example 1:

Scanning field gradient setting to observe the "2kHz" ringing of medium-beta cavities which becomes prominent when the cavity is run at a gradient much beyond the designed 10 MV/m

(note: half gain)

Accelerator Systems Division PHOTEX 11 *Diagram Hengjie Ma, Oct. 10, 05 ORNL*

SPALLATION NE

LLRF05SNS LLRF : Data buffers facilitate studies and operations

Example 2:

Scanning loop gain to see its effectiveness on controlling "2kHz" cavity ringing

Accelerator Systems Division Parameters and the 12 Hengjie Ma, Oct. 10, 05 ORNL

SPALLATION NEUT

Example 3:

Scanning loop gain to observe the coupling of "2kHz" cavity ringing between field phase and amplitude in association with gain value.

Accelerator Systems Division PHOTERS 13 Hengjie Ma, Oct. 10, 05 ORNL

SPALLATION NEUTRO

Example 4:

Observing effectiveness and learning speed of FF buffer data for compensating "2kHz" cavity ringing.

Accelerator Systems Division PHACCELERAL CORNL CORNL ORNL

SPALLATION NEUTRO

*LLRF05*SNS LLRF : Data buffers facilitate studies and operations

Example 5:

Using DSO Zoom/Pan feature of data buffers to observe 5/6pi mode over time

in closed-loop.

•Insignificant
amount of 5/6 pi
mode observed at RF turn-on and off

- •5/6 pi mode
decays rapidly
and is further significantly
reduced during
flat-top when
feedback is turn on.
- •Moving window =25us,
- •Sampling rate =
5MHz.

Accelerator Systems Division PHOTERS 15 Bengjie Ma, Oct. 10, 05 ORNL DRNL

*LLRF05*SNS LLRF : Data buffers facilitate studies and operations

Example 6:

Using DSO Zoom/Pan feature of data buffers to observe 5/6pi mode over time.

in open loop.

•5/6 pi mode is also greatly reduced at and during the flattop time EVEN WHEN FB IS OFF.

•Cancellation effect from FF pattern ?

Accelerator Systems Division Division ORNL ORNL ORNL

Example 7:

Accelerator physicists are successfully using LLRF buffer data to implement a new method for calibrating field probe and setting up RF for hi-beta cavities.

Details, see "Calibrate Pickup " Probe of SC Cavity and Set Synchronous Phase with Drifting Beam, " by Y. Zhang*, I. Campisi, P. Chu, J. Galambos, S. D. Henderson.

To be published in *Nuclear Instruments and Methods*.

Accelerator Systems Division PHOTEX 17 *Hengjie Ma, Oct. 10, 05 ORNL*

*LLRF05*SNS LLRF : Operation modes – RF turn-on & cavity filling

Mode 1: RF turn-on in P-I control only.

Pros – simplest.

Cons – unconstrained overshoot, undesirable large-signal response behavior.

Accelerator Systems Division PHONE 18 *BEACH <i>ORNL* 18 *DRNL*

SPALLATION NEUTRON

*LLRF05*SNS LLRF : Operation modes – RF turn-on & cavity filling

Mode 2: RF turn-on in P-I control only with behavior modified by using a linear set-point ramping.

- **Pros –simple, works well for NC cavities.**
- **Cons – not a solution for SC cavities.**

Accelerator Systems Division PHONE 19 *B <i>Accelerator Systems Division ORNL* 19

SNS LLRF : Operation modes – RF turn-on & cavity filling

Mode 3: RF turn-on in P-I control only with a set-point^{SPALLAT} **curve from SP table.**

Pros: flexible.

LLRF05

*Accelerator Systems Division Division Parameters 20**Hengjie Ma, Oct. 10, 05* *****ORNL*

*LLRF05*SNS LLRF : Operation modes – RF turn-on & cavity filling

- Mode 4: Cavity filling in in open-loop with FF first and **I SPALLATION NEUTRON SOL then turn on feedback control during flat-top.**
- **Pros – effective for SC cavities. Chance to observe cavity**
- **Cons –Requires a perfect transition from FF to FB.**

Accelerator Systems Division ORNL ²¹ *Hengjie Ma, Oct. 10, 05*

Mode 5: RF turn-on/cavity filling with FF + SP curve

Mode 6: RF turn-on/cavity filling with FF + SP curve + gain ramping

Currently under testing.

Summary

- **System performed well and met the needs during the commissioning runs.**
- • **Hardware platform has flexibility and capacity to allow further expansions.**
- • **Strong software support has offered ease and convenience of operations.**
- **An immediate focus is on the development of an effective adaptive feed forward for beam loading compensation.**