

Characterization of SNS Low-Level RF System

Hengjie Ma

Mark Champion, Mark Crofford, Kay Kasemir, Chip Piller Lawrence Doolittle, Alex Ratti *

> e-mail: <u>hengjie@sns.gov</u> Tel: 865-385-7939

Oak Ridge National Laboratory * Lawrence Berkeley National Laboratory

Oct. 10, 2005

- SNS LLRF digital hardware
- System characteristics frequency / transient response
- Data buffer features facilitate operations and R&D
- Mode of operations RF turn-on/cavity filling

Current configuration

chip resources used: 50% 20% of logic slices,

30% of RAMBs, 50% of IOBs, 8% of multipliers

Previous VHDL tool-chain

•A manual process

•Lack of simulation at system level

Present Verilog tool-chain

- •Automated code generation
- •Integrated development process
- •Behavioral simulation of system level

Frequency response

Type I, 2nd + order system

$$G(s) = A \cdot K_p \cdot K_c \cdot \frac{(s + K_i)}{s(s + K_c)} \cdot \frac{K_f}{s + K_f} \cdot \frac{K_k}{s + K_k} \cdot e^{-\tau s}$$

Constraints:

- 1. Loop delay
 - •Loop delay limits gain-bandwidth product : $A \cdot K_p \cdot K_c$

•Gain-bandwidth limits the maximum usable loop gain

•Loop gain affects system transient response and control error

•Loop delay term adds more poles and zeros to the system transfer function

2. Quantization errors

Total loop gain comes mainly from the internal digital gain,Quantization error limits the maximum usable digital gain

SNS LLRF: System characteristics

SPALLATION NEUTRON SOURCE

Nichols Chart for SNS RF

SNS LLRF: Issues associated with digital systems

Transient response to step change – NC cavity

Transient response to test pulse - SC cavity

SCL-12a @ 9MV/m response to test rectangular pulse to FF input

- •Closed-loop control bandwidth:≈59kHz for critically damped, cavity BW: 0.56kHz
- •Total loop gain tested:≈ 89, 104 required for critical damping

Transient response to beam loading

SCL-12a @ 9MV/m response to 10mA/300us beam pulse

- •Beam rise time: ≈ 10us, feedback action delay time: ???
- •Settling time of proportional feedback control: ≈19.5us
- •Damping ratio: 0.76 ; Peak field error: 0.3% ; Residual error right after settling : 0.12%
- •AFF for beam loading compensation ?

LLRF05 SNS LLRF : Data buffers facilitate studies and operations

Example 1:

Scanning field gradient setting to observe the "2kHz" ringing of medium-beta cavities which becomes prominent when the cavity is run at a gradient much beyond the designed 10 MV/m

(note: half gain)

Accelerator Systems Division

SPALLATION

LLRF05 SNS LLRF : Data buffers facilitate studies and operations

Example 2:

Scanning loop gain to see its effectiveness on controlling "2kHz" cavity ringing

12

Accelerator Systems Division

ORNL

SPALLATION

Example 3:

Scanning loop gain to observe the coupling of "2kHz" cavity ringing between field phase and amplitude in association with gain value.

Accelerator Systems Division

SPALLATIO

Example 4:

Observing effectiveness and learning speed of FF buffer data for compensating "2kHz" cavity ringing.

Accelerator Systems Division

SPALLATION

LLRF05 SNS LLRF : Data buffers facilitate studies and operations

Example 5:

Using DSO Zoom/Pan feature of data buffers to observe 5/6pi mode over time

in closed-loop.

•Insignificant amount of 5/6 pi mode observed at RF turn-on and off

•5/6 pi mode decays rapidly and is further significantly reduced during flat-top when feedback is turn on.

- •Moving window =25us,
- •Sampling rate = 5MHz.

Accelerator Systems Division

LLRF05 SNS LLRF : Data buffers facilitate studies and operations

Example 6:

Using DSO Zoom/Pan feature of data buffers to observe 5/6pi mode over time.

in open loop.

•5/6 pi mode is also greatly reduced at and during the flattop time EVEN WHEN FB IS OFF.

•Cancellation effect from FF pattern ?

Accelerator Systems Division

Example 7:

Accelerator physicists are successfully using LLRF buffer data to implement a new method for calibrating field probe and setting up RF for hi-beta cavities.

Details, see "Calibrate Pickup" Probe of SC Cavity and Set Synchronous Phase with Drifting Beam, " by Y. Zhang*, I. Campisi, P. Chu, J. Galambos, S. D. Henderson.

To be published in Nuclear Instruments and Methods.

Pros - simplest.

Cons - unconstrained overshoot, undesirable large-signal response behavior.

LLRF05 SNS LLRF : Operation modes – RF turn-on & cavity filling

Mode 2: RF turn-on in P-I control only with behavior modified by using a linear set-point ramping.

- Pros simple, works well for NC cavities.
- Cons not a solution for SC cavities.

SNS LLRF: Operation modes - RF turn-on & cavity filling

Mode 3: RF turn-on in P-I control only with a set-point

Pros: flexible.

LLRF05

LLRF05 SNS LLRF : Operation modes – RF turn-on & cavity filling

- Mode 4: Cavity filling in in open-loop with FF first and then turn on feedback control during flat-top.
- Pros effective for SC cavities. Chance to observe cavity
- Cons Requires a perfect transition from FF to FB.

Mode 5: RF turn-on/cavity filling with FF + SP curve

Mode 6: RF turn-on/cavity filling with FF + SP curve + gain ramping

Currently under testing.

Summary

- System performed well and met the needs during the commissioning runs.
- Hardware platform has flexibility and capacity to allow further expansions.
- Strong software support has offered ease and convenience of operations.
- An immediate focus is on the development of an effective adaptive feed forward for beam loading compensation.