

An IQ-based low-level RF prototype for ALBA

Hooman Hassanzadegan

Francis Perez

An IQ-based LLRF prototype for ALBA

1 of 8

Design of the analog LLRF prototype

Specifications

Measured EU cavity parameters (E. Weihreter)

Nominal frequency	499.65	MHz
Tuning range	2	MHz
Shunt impedance	3.1	MΩ
Unloaded Q	26692	
Waveguide cut-off	615	MHz

ALBA LLRF specifications (analog prototype)

Phase loop				
	Design	Practice		
Туре	Analog IQ with 'P' regulator	Analog IQ with 'P' regulator		
Bandwidth	1-2	~1 (measured)	MHz	
No. of bits	16	16	Bits	
DAC throughput	100	100	kHz	
Phase stability	±1	?	deg	
Amplitude loop				
	Design	Practice		
Туре	Analog IQ with 'P' regulator	Analog IQ with 'P' regulator		
Bandwidth	1-2	~1 (measured)	MHz	
No. of bits	16	16	Bits	
DAC throughput	100	100	kHz	
Amp. stability	±1	?	%	
Tuning loop				
N.	Design		-	
Туре	IQ dem and PCI tuner driver			
Bandwidth	~100		Hz	
Tuning range	2		MHz	
Tuning resolution	0.1 - 1		kHz	

ALBA storage-ring RF specifications

Master oscillator frequency	500	MHz
Cavity nominal frequency	499.654	MHz
Phase stability	±1	deg
Amplitude stability	±1	%
No. of cavities	6	
RF power (per cavity)	150	kW
RF voltage (per cavity)	600	kV
Overvoltage factor	2.8	
Synchroneous phase	159	deg

LLRF05 – October 2005

Current status

The low-level electronics

The industrial PC

The mockup cavity

Closed-loop test setup for amplitude and phase regulation

<u>Closed loop test – amplitude regulation</u>

Main problems we have faced

=>

Problem

Solution

- 1. Noise and disturbance
- 2. DC offsets
- 3. Voltage ranges of the ICs
- Careful PCB design, filtering, grounding, good components, shielding, etc.
- => Variable resistors for DC adjust
 - => Careful circuit design

Next steps

- 1. Use of a 'PI' regulator instead of 'P' to eliminate the steady-state error
- 2. Noise/disturbance reduction
- 3. Closed-loop tests with the mockup cavity for amplitude and phase regulation