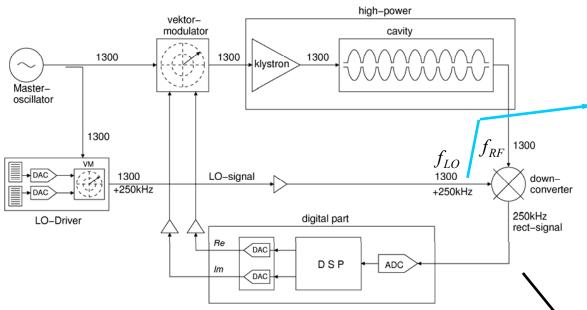
,Precision low-noise field detectors'

F. Ludwig, M. Hoffmann, G. Möller, S. Simrock / DESY


T. Filipek, R. Romaniuk / Warsaw University

Content:

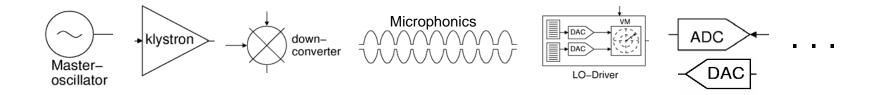
- 1 Stability requirements for phase and amplitude for the XFEL
- 2 Next LLRF system for optimized detector operation
- 3 Limitations from noise and non-linearity
- 4 Down-converter prototype for CW-modulation scheme
- 5 LLRF phase noise budget
- 6 Summary and Outlook

Stability requirements on phase and amplitude for the XFEL

Actual LLRF control system using a switched LO-signal :

- Rotation of the LO-signal in four 90° steps using a squared LO-Signal.
- Bandwidth for transforming the squared LO-signal : $\Delta f \approx 10MHz$

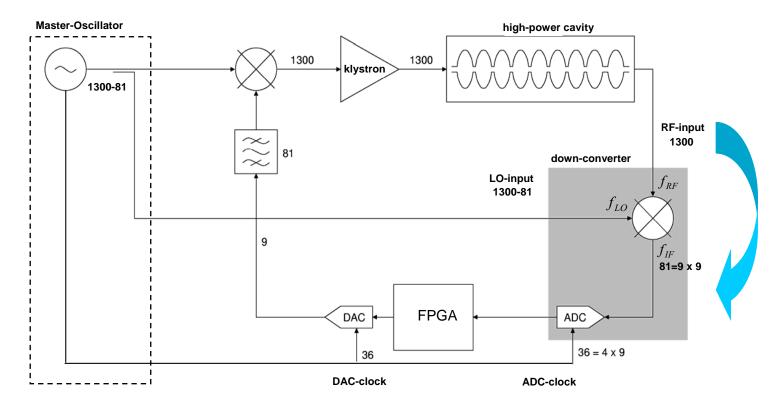
• Stability requirements of the cavity field vector sum :


Amplitude stability : $\frac{\delta A}{A} < 5 \cdot 10^{-5}$ $\delta U_{XFEL} < 50 \mu V_{rms}$ (normalized to A=1V)

Phase stability:

86dB dynamic range of signal-to-noise.

Where comes the noise from and what do we measure after the down-converter?


We measure all noise sources of the loop for a finite gain, but not the residual jitter between beam and reference!

How can we improve this?

- Conceptional improvements using noise reduction methods, e.g. filtering and averaging.
- Sort the priorities: low noise, low drift, high linearity, absolute accuracy.
- Improve each component.
- Minimize residual jitter by increasing or decreasing the loop gain.

• Proposed LLRF control system operating with a CW LO-signal :

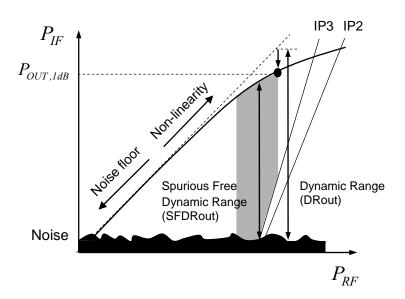
Measuring bandwidth : $\Delta f \approx 1MHz$

Jitter transformation:

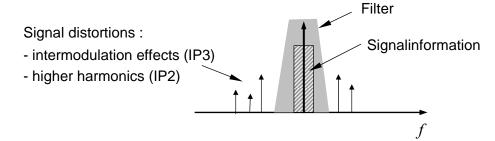
$$\Delta t = 10 \, fs$$

$$\downarrow \downarrow$$

$$\Delta T = \frac{f_{RF}}{f_{IF}} \, \Delta t$$


$$\downarrow \downarrow$$

$$\Delta T \approx 160 \, fs$$


- + Higher harmonics and disturbancies using bandpass filters can be suppressed.
- → Narrowband filtering the IF-signal reduces distortions from mixer non-linearities.
- + Averaging reduces ADC-noise and no aliasing effects.
- No noise from LO-driver.
- Precise synchronization system.

Down-converter limitations from noise and non-linearity

• Compromise between noise and linearity:

• Filtering of distortions :

- Filtering of distortions
- Linearization during beam pauses

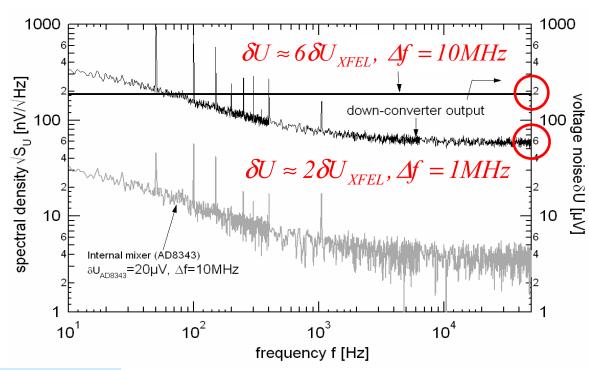
• Active Gilbert-mixers:

- Passive Mixer + FET:
- + High conversion gain
- + Low LO drive needed
- + Low LO/RF crosstalk
- Normal NF
- Additional 1/f-noise

- + High linearity
- + Low NF
- Large LO drive needed (additional phase noise)
- High LO/RF crosstalk

) 8	LT5522	ADL5350	LT5527	HMJ7	HMJ7-1	AD8343		
P(RF)	dBm	7		-5	-10	-10	-12		
P(LO)	dBm	-5	4	-3	21	21	-10		
P(IF)	dBm	7			18,5	-18,5	-4,9		
NF	dB	13,2	6	12,4	8,5	10,5	14,1		
OIP3	dBm	23	20	27,5	23,5	25,5	23,6		
out,1dB	dBm	8,1	11	10,3	13,5	14,5	8,9		
Gain	dB	-0,4	-6	2,3	-8,5	-8,5	7,1		
i. RF to IF	dB	100	22		24	24	20		
i. LO to RF	dB	50	15	55	24	24	52		
i. LO to IF	dB	19	21	70	30	30	54		
IF(min)	MHz	0,1	200		10	10	0		
		90 - 90 00	B=10	MHz	2				
MDSin	dBm	-87,78	-94,977	-88,577	-92,5	-90,48	-86,88		
DRin	dB	96,28	111,98	96,577	114	113,5	88,68		
MDSout	dBm	-87,38	-88,977	-86,277	-84	-81,98	-79,78		
DRout	dB	95,48	99,977	96,577	97,5	96,48	88,68		
SFDRout	dB	73,58	72,651	75,851	71,7	71,65	68,92		

Multi-channel detector board:

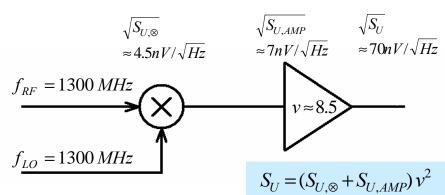

- Gilbert cell mixer

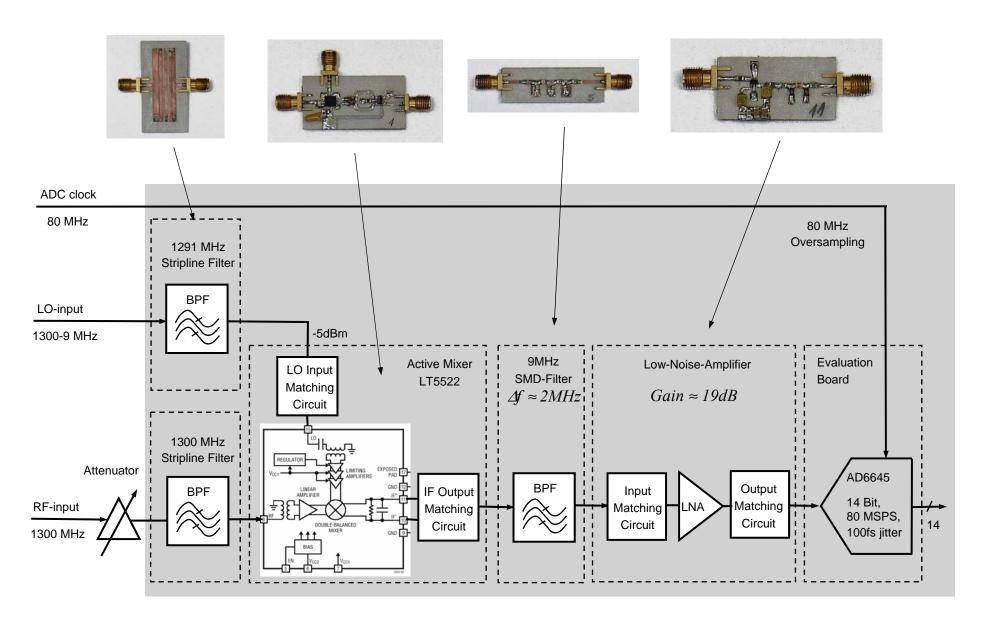
Actual down-converter

KANAL 8 KANAL 8 F12-234 F13-235 F13

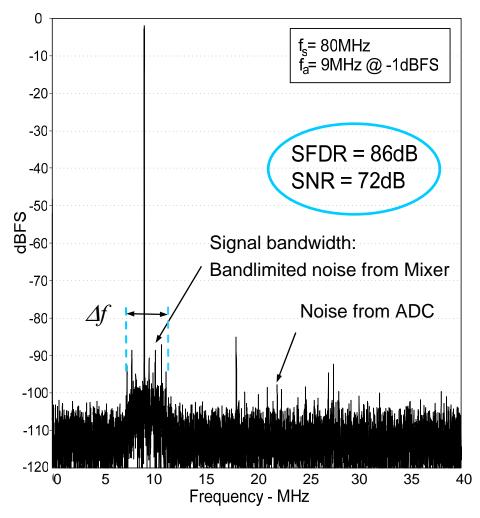
LLRF05: G.Möller, [43] Multichannel down-converter board for cavity field detection at the TTF.

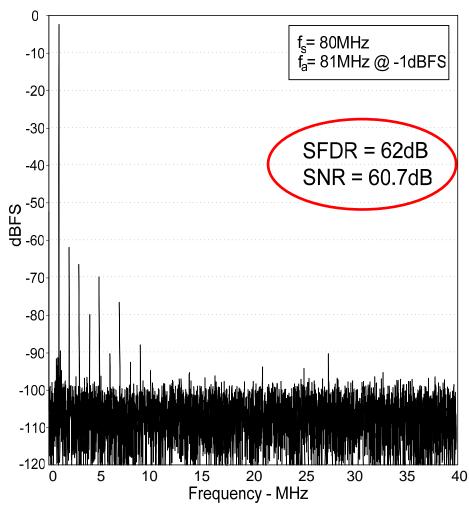
Noise from actual down-converter :




- First mixer stage determines the noise performance.
- Actual down-converter performance:

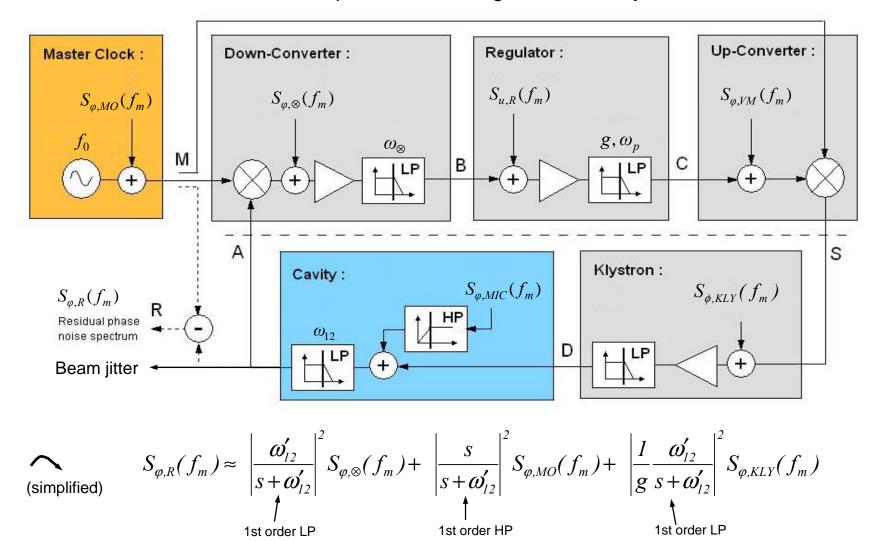
$$\begin{split} \delta U &\approx 6 \, \delta U_{XFEL}, & \Delta \!\! f = \! 10 MHz \!\! , \text{ (Switched LO-Signal)} \\ \delta U &\approx 2 \, \delta U_{XFEL}, & \Delta \!\! f = \! 1.0 MHz \!\! , \text{ (CW-LO-Signal)} \end{split}$$


$$\delta U \approx 0.6 \delta U_{XFEL}$$
, $\Delta f = 0.1 MHz$, (Cavity filtered)


Down-converter prototype for CW-modulation scheme

• Oversampling:

• Undersampling:

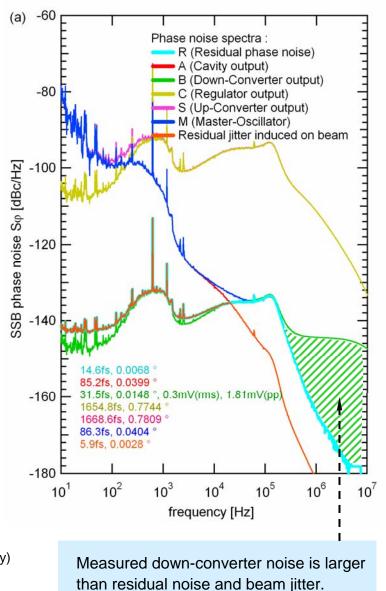

Oversampling promises better SNR than undersampling.

ADC-noise, oversampling, clock phase noise requirements

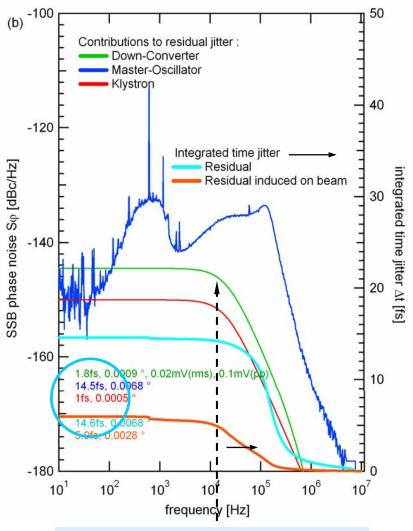
LLRF05: T.Filipek, Frequency Conversion in Field Stabilization System for Application in SC cavity of linear accelerator.

LLRF phase noise budget – Residual jitter

The effective noise bandwidth for the down-converter is given by : $\omega'_{12} = g \omega_{12}$



- MO and klystron contributions decreases with gain.
 - Down-converter contributions increases with gain.


Phase noise budget (Switched LO, single cavity)

 $\Delta f \approx 10 MHz$

• Phase noise spectra :

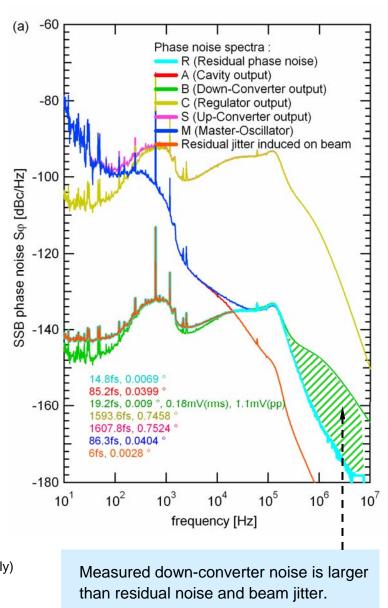
• Contributions to residual jitter :

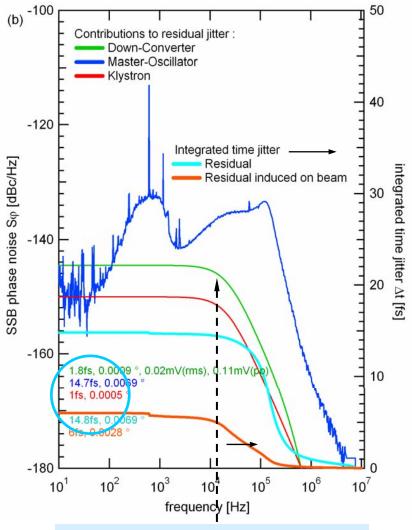
- Noise is filtered by the cavity.
 - The down-converter is not a good indicator for the residual jitter!

$$\begin{split} f_p &= 500kHz, f_0 = 1300MHz\\ S_{u,\otimes}(f_m) &= 70nV/\sqrt{Hz}\\ S_{\phi,AMP}(f_m) &= -110\,dBc/Hz\\ S_{\phi,MO}(f_m) &= \text{TTF2 (new supply)} \end{split}$$

 $f_{\infty} = 10MHz$

 $g = 100, f_{12} = 200Hz$


Frank Ludwig, DESY


Phase noise budget (Switched LO, single cavity)

 $\Delta f \approx 1MHz$

• Phase noise spectra:

• Contributions to residual jitter :

- Noise is filtered by the cavity.
 - The down-converter is not a good indicator for the residual jitter!

$$\begin{split} g &= 100, f_{12} = 200 Hz \\ f_p &= 500 kHz, f_0 = 1300 MHz \\ S_{u, \otimes}(f_m) &= 70 nV / \sqrt{Hz} \\ S_{\phi, AMP}(f_m) &= -110 \, dBc / Hz \\ S_{\phi, MO}(f_m) &= \text{TTF2 (new supply)} \end{split}$$

 $f_{\infty} = 1MHz$

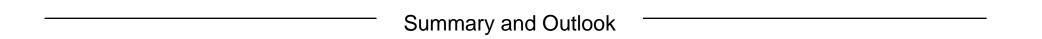
Frank Ludwig, DESY

Summary and Outlook

• Summary :

- The CW-modulation scheme combines many advantages, for example :
 - No aliasing effects and ADC-noise reduction.
 - Filtering of distortions, which allows a linearization with improved SNR.
- For multi-channel systems Gilbert mixers are recommended.
- Oversampling promises better SNR than undersampling.
- The down-converters noise contribution to the beam jitter is reduced by the cavity transfer function.

• Outlook :

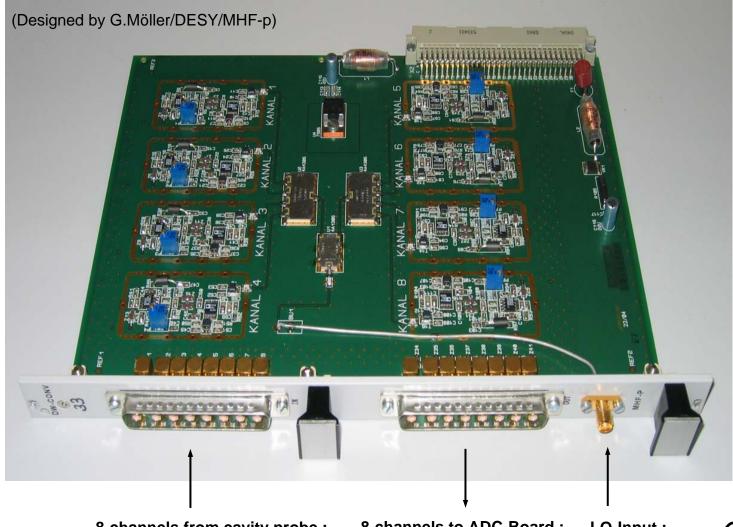

- Design a multi-channel board and test within accelerator environment.
- Beam jitter caused by LLRF should be measured with fs-resolution.

• Decrease mixers noise :

- Passive front end structures.
- Parallel structures of detectors (VLSI prefered).
- pHEMT Gilbert mixers (promise higher gain and lower noise).
- Additional "Zero-Phase" detectors.

• Increase mixer output :

Linearize the down-converters
 characteristic within the beam pause.



Thanks for your attention!

Summary and Outlook

Backup Slides

Actual down-converter

- + High LO/RF isolation
- Mixing into baseband causes additional noise

8-channels from cavity probe:

 $P_{RF} \approx [-40dBm, -10dBm]$

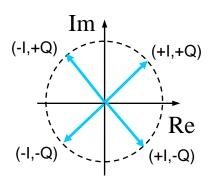
8-channels to ADC-Board:

$$\sqrt{S_U} \approx 70 nV/\sqrt{Hz}$$

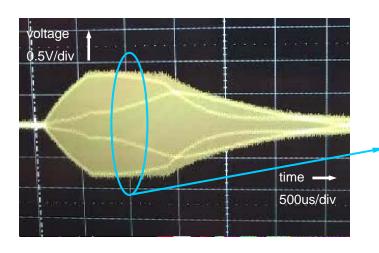
LO-Input:

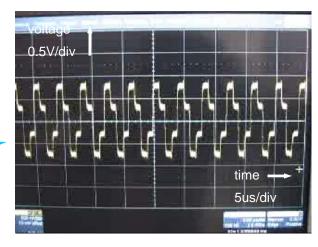
$$P_{LO} \approx -5dBm$$

LLRF05: G.Möller, [43] Multichannel down-converter board for cavity field detection at the TTF.


Choice of LLRF system for optimized detector operation

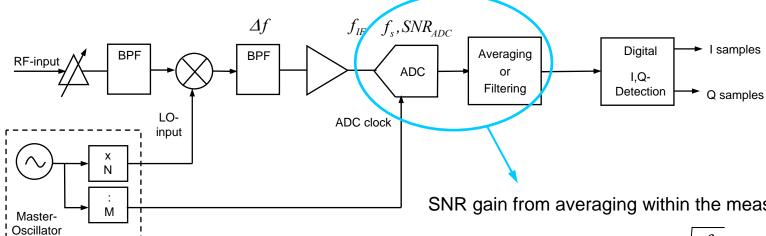
• Actual LLRF control system using a switched LO-signal :


high-power vektormodulator cavity 1300 1300 1300 klystron Masteroscillator 1300 1300 f_{LO} 1300 1300 LO-signal down-+250kHz converter +250kHz 250kHz digital part LO-Driver rect-signal Re DAC DSP ADC) DAC

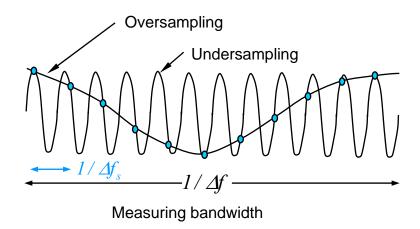

Phase and amplitude detection of the cavity field vector :

Rotation of the LO-signal in four 90° steps, using a 250kHz squared LO-Signal.

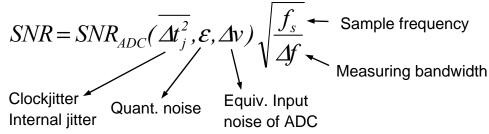
• Down-converter output IF-signal :


Bandwidth for transforming 250kHz squared pulses:

$$\Delta f \approx 10 MHz$$


but required regulation bandwidth is only:

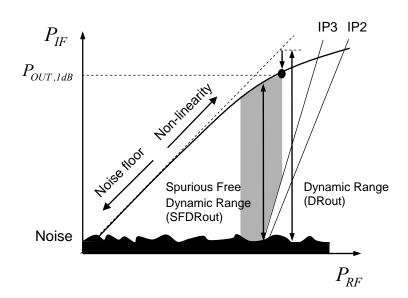
$$\Delta f \approx 1MHz$$

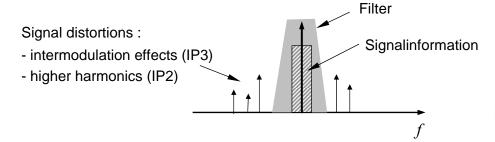

• SNR gain from ADC oversampling :

• Number of samples :

SNR gain from averaging within the measuring time:

- The signal within the bandbass filter, respectively noise from mixer stage will not be averaged.


Optimal IF frequency, clock phase noise requirements


LLRF05: T.Filipek, Frequency Conversion in Field Stabilization System for Application in SC cavity of linear accelerator.

Down-converter limitations from noise and non-linearity

• Compromise between noise and linearity:

• Filtering of distortions :

- Filtering of distortions
- Linearization during beam pauses

• Active Gilbert-mixers:

Passive Mixer + FET:

- + High conversion gain
- + Low LO drive needed
- + Low LO/RF crosstalk
- Normal NF
- Additional 1/f-noise

- + High linearity
- + Low NF
- Large LO drive needed (additional phase noise)
- High LO/RF crosstalk

		A								
7		LT5522	ADL5350	LT5527	HMJ7	HMJ7-1	AD8343			
P(RF)	dBm	7		-5	-10	-10	-12			
P(LO)	dBm	-5	4	-3	21	21	-10			
P(IF)	dBm	7			18,5	-18,5	-4,9			
NF	dB	13,2	6	12,4	8,5	10,5	14,1			
OIP3	dBm	23	20	27,5	23,5	25,5	23,6			
out,1dB	dBm	8,1	11	10,3	13,5	14,5	8,9			
Gain	dB	-0,4	-6	2,3	-8,5	-8,5	7,1			
i. RF to IF	dB	100	22		24	24	20			
i. LO to RF	dB	50	15	55	24	24	52			
i. LO to IF	dB	19	21	70	30	30	54			
IF(min)	MHz	0,1	200		10	10	0			
B=10MHz										
MDSin	dBm	-87,78	-94,977	-88,577	-92,5	-90,48	-86,88			
DRin	dB	96,28	111,98	96,577	114	113,5	88,68			
MDSout	dBm	-87,38	-88,977	-86,277	-84	-81,98	-79,78			
DRout	dB	95,48	99,977	96,577	97,5	96,48	88,68			
SFDRout	dB	73,58	72,651	75,851	71,7	71,65	68,92			

Multi-channel detector board :

