Superconductive cavity driving with FPGA controller

Tomasz Czarski

Warsaw University of Technology Institute of Electronic Systems ELHEP-DESY Group

LLRF_05 - CERN, October 10-13, 2005

Main topics

- Low Level RF control system introduction
- Superconducting cavity modeling
- Cavity features
- Recognition of real cavity system
- Cavity parameters identification
- Control system algorithm
- Experimental results

Functional block diagram of Low Level Radio Frequency Cavity Control System

LLRF_05 - CERN, October 10-13, 2005

Superconductive cavity modeling

RF current	CAVITY transfer function	RF voltage
$\mathbf{I}(\mathbf{s}-\mathbf{i}\omega_{g})$	$Z(s) = (1/R + sC + 1/sL)^{-1}$	$Z(\mathbf{s}) \cdot \mathbf{I}(\mathbf{s} - \mathbf{i}\omega_{g})$
Modulation	Analytic signal: $a(t) \cdot exp[i(\omega_g t + \varphi(t))]$	Demodulation
$\exp(i\omega_{g}t)$	<i>Complex envelope:</i> $a(t) \cdot exp[i\phi(t)] = [I,Q]$	$\exp(-i\omega_{g}t)$
Input signal	Low pass transformation $Z(z + iz) = P/(z + z - iAz)$	Output signal
I(s)⇔i(t)	$\Sigma(\mathbf{S} + \iota \boldsymbol{\omega}_{g}) \approx \boldsymbol{\omega}_{1/2} \cdot \mathbf{K} / (\mathbf{S} + \boldsymbol{\omega}_{1/2} - \iota \Delta \boldsymbol{\omega})$ half-bandwidth = $\boldsymbol{\omega}$ detuning = $\Delta \boldsymbol{\omega}$	$7(s+i\omega) \cdot I(s) \leftrightarrow v(t)$

State space - continuous and discrete model
$$d\mathbf{v}/d\mathbf{t} = \mathbf{A} \cdot \mathbf{v} + \omega_{1/2} \cdot \mathbf{R} \cdot \mathbf{i}$$

 $\mathbf{A} = -\omega_{1/2} + \mathbf{i}\Delta\omega$ $\mathbf{v}_n = \mathbf{E} \cdot \mathbf{v}_{n-1} + \mathbf{T} \cdot \omega_{1/2} \cdot \mathbf{R} \cdot \mathbf{i}_{n-1}$
 $\mathbf{E} = (1 - \omega_{1/2} \cdot \mathbf{T}) + \mathbf{i}\Delta\omega \cdot \mathbf{T}$

LLRF_05 - CERN, October 10-13, 2005

Cavity features

Carrier	Pulse time	Repetition	Field	Beam pulse	Average
frequency		time	gradient	repetition	beam current
1.3 GHz	1.3 ms	100 ms	25 MV/m	1µs	8 mA

Cavity parameters: resonance circuit parameters:				R L C
Resonance frequency	Characteristic resistance	Quality factor	Half- bandwidth	Detuning
$\omega_0 = (LC)^{-1/2}$	$\rho = (L/C)^{\frac{1}{2}}$	$Q = R/\rho$	$\omega_{1/2} = 1/2RC$	$\Delta \omega = \omega_0 - \omega_g$
2π·1.3 GHz	520 Ω	3.106	2π·215 Hz	$\sim 2\pi \cdot 600 \text{ Hz}$

LLRF_05 - CERN, October 10-13, 2005

Algebraic model of cavity environment system

LLRF_05 - CERN, October 10-13, 2005

Parameters identification of cavity system in noisy and no stationary condition

External CAVITY model $\mathbf{v}_{k+1} = \mathbf{E}_k \cdot \mathbf{v}_k + \mathbf{F}_k \cdot \mathbf{u}_k \qquad \mathbf{E}_k = (1 - \omega_{1/2} \cdot T) + \mathbf{i} \Delta \omega_k \cdot T$

Linear decomposition of no stationary parameter Y:

 $\mathbf{Y} = \mathbf{W}^* \mathbf{x}$

- W matrix of base functions: *polynomial* or *cubic B-spline set*
- \mathbf{x} unknown vector of series coefficients

Over-determined matrix equation for measurement range:

 $\mathbf{V} = \mathbf{Z}^*\mathbf{z}$

V - total output vector, Z - total structure matrix

 \mathbf{z} – total vector of unknown values

Least square (LS) solution:

$$\mathbf{z} = (\mathbf{Z}^{\mathrm{T}*}\mathbf{Z})^{-1*}\mathbf{Z}^{\mathrm{T}*}\mathbf{V}$$

LLRF_05 - CERN, October 10-13, 2005

Implementation of parameters estimation for adaptive control of pulsed operated cavity

RANGE	SIGNAL CONDITION	ASSUMPTION	ESTIMATED VALUE
DECAY	$u = 0, u_b = 0$	_	$\omega_{1/2}$ and $[\Delta\omega]$
FILLIG	$\mathbf{u}_{\mathrm{b}} = 0$	$\arg(\mathbf{F}) = 0, \ \omega_{1/2} = \text{const.}$	$[\mathbf{F}]$ and $[\Delta\omega]$
FLATTOP	$\mathbf{u}_{\mathrm{b}} = 0$	$[\Delta \omega] - \text{linear}, \omega_{1/2} = \text{const.}$	[F]

LLRF_05 - CERN, October 10-13, 2005

Functional black diagram of FPGA controller and control tables determination

CONTROL	FEED-FORWARD	SET-POINT
<i>Filling</i> Cavity is driven in resonance condition	$i(t) = Io \cdot exp(i\phi(t))$ $d\phi(t)/dt = \Delta\omega(t)$	$\mathbf{v}(t) = \mathbf{i}(t) \cdot \mathbf{R}(1 - \exp(-\omega_{1/2} \cdot t))$
<i>Flattop</i> Envelope of cavity voltage is stable	$\mathbf{i}(t) = \mathbf{V_0} \cdot (1 - \mathbf{i} \Delta \omega(t) / \omega_{1/2}) / \mathbf{R}$	$\mathbf{v}(t) = \mathbf{V_0} = \mathbf{V_0} \cdot \exp(\mathbf{i}\Phi_0)$

Functional diagram of cavity testing system

LLRF_05 - CERN, October 10-13, 2005

Adaptive feed-forward cavity driving first step of iterative procedure – real process

LLRF_05 - CERN, October 10-13, 2005

Adaptive feed-forward cavity driving second step of iterative procedure – MATLAB simulation

LLRF_05 - CERN, October 10-13, 2005

Feed-forward cavity driving CHECHIA cavity and model comparison

LLRF_05 - CERN, October 10-13, 2005

Feedback cavity driving CHECHIA cavity and model comparison

LLRF_05 - CERN, October 10-13, 2005

CONCLUSION

- Cavity model has been confirmed according to reality
- Cavity parameters identification has been verified for control purpose

Future plans

- Vector sum control with beam
- Forward and reflected signal application for control purpose
- Normal-conductive cavity control for RF Gun