Digital Low Level RF Control System for the DESY TTF VUV-FEL Linac

V. Ayvazyan, S. Choroba, A. Matyushin, G. Moeller, G. Petrosyan, K. Rehlich, S. Simrock, P.Vetrov DESY, Hamburg, Germany

Outline

- Overview of RF System
- Requirements for RF Control
- Components of Digital Control System
 - Hardware
 - Software
- Conclusions

VUV-FEL RF System Diagram

Ayvazyan / Simrock, Workshop on Low Level RF, CERN, Oct. 10-13, 2005

DFS

RF Control Requirements

- Amplitude and Phase Stability:
- $\sigma_A / A < 10^{-4}$ amplitude
- $\sigma_{\phi} < 0.1^{\circ}$ for phase (fast fluctuations)

• Other requirements:

- ACC1: cav. 1-4 at 12 MV/m, cav. 5-8 at 20 MV/m phase of accelerating field -10.8 deg.

- 3rd harmonic cavity at 14 MV/m at 183 deg.
- S-Band cavity at 2856 MHz phase stability < 1 deg.
- RF Gun operation without field probe. rep. rate, pulse length and power must be variable.

Schematic of the Digital RF System

Digital I/O Detection

- downconversion of cavity field to IF frequency at 250 kHz
- complete phase and amplitude information of the accelerating field is preserved.

- sample IF signal at 1MHz rate
- subsequent samples describe real and imaginary component of the cavity field.

Control Algorithm

Ayvazyan / Simrock, Workshop on Low Level RF, CERN, Oct. 10-13, 2005

Digital Feedback Hardware

- DSP System
- New hardware, faster DSPs (C67), input channels for the control of 8/16/24 cavities
- 8 channel ADC board
- 8 channel DAC board, gigalink interface between boards

Digital Feedback Hardware (3)

Gun and ACC1

ACC2, ACC3, ACC4 & ACC5

DESY

Digital Feedback Software

- DSP System
- Exception detection and handling
- DOOCS DSP Server
- Parameter based operation, tables for setpoint, feedback gain and feedforward calculated by server
- DOOCS Finite State Machine Server
- Automated operation, Simple operator interface
- Application tools
- Adaptive feedforward, Beam phase measurement, Loaded Q and cavity detuning measurement...

Cavity Loaded Q and Phase Adjustment

- Motorized three stub waveguide tuners used to adjust phases and loaded Q for all cavities
- Improvement from $\pm 30^{\circ}$ to $\pm 3^{\circ}$

Wav	e Guid	e Tunei	•	C1 .A	ICC1	
alles ok, all fine						
Tuner stat	us: o	online	Device	status	: ОК	
M1 STOP	+100 + -100 -	1000 Sol	1 2760	Ist27	'50 um	off
M2 STOP	+100 + -100 -	1000 Sol	1 3780	Ist	3740	off
M3 STOP	+100 + -100 -	1000 Sol	1 2780	Ist	2730	off

Beam Based Calibration

- Good beam required to get sufficient signal (8nC, $30\mu s$, 15MV/m)
- Preliminary calibration (to 10%)
- Gradient calibration (to 3-5%)

Exception Handling

- Cavity quench detection mechanism (algorithms)
- Exception handling procedure

1-st quench in Cavity 2 Eacc=19[MV/m]

2-nd quench in Cavity 6 3-rd quench in Cavity 1 Eacc=21[MV/m]

Eacc=24[MV/m]

Automation of RF Operation

- High degree automation of accelerator operation
- Reduce workload of operators
- Maximize availability of accelerator

Graphical representation of logical dependencies

Adjust feedback loop,

Optimize beam parameters

Conclusions

- A digital RF control system has been developed to control the vector-sum of the accelerating field of group of superconducting cavities powered by a single klystron
- The RF control system is realized as a driven feedback system and has proven that the phase and amplitude stability requirements can be meet even in the case of control of the vector-sum of multiple cavities
- First lasing at a wave length of 30nm was observed beginning of this year with feedback only
- Automation of RF operation under development
- Next generation RF control based on FPGA under development

Acknowledgements

We gratefully acknowledge the contributions from LLRF team members for their dedicated support

We also want to express our thanks to the VUV-FEL operation team for their valuable comments and helpful discussions

