Novel multi-collimator using BP-1 glass and application for X-ray CCDs

Junko.S.Hiraga (JAXA/ISAS)

Yokohama S.Nakamura, Y.Uchida, M.Kikuchi,

National Univ. S.Kurata, Y.Ozaki

ISAS/JAXA T.Takashima

NIRS Y.Uchihori, T.Kitamura

KEK H.Tamura

CCDs in X-ray Astronomy

current status of X-ray CCD capability

Position resolution : 10μm

Energy resolution : 2%

Sensitive band: 0.3-10keV

time resolution : msec

Newton 1999

Suzaku 2005, Japan

ASCA 1993, Japan

Standard focal plane detector with totally good performance

for the future mission

high efficiency above 10keV: now developed in Japan.

Important: investigation of the signal charge response

collimator scan v.s. mesh technique

scanning with mono-collimator

mesh-experiment as multi-collimator

- X-ray absorber just above the detector
- one pinhole
- X-Y stage

- Identical substructure of the pixel
- huge number of pixels
- huge number of pinholes

scanning over a pixel with µm order of accuracy.

The charge cloud shape

The results

- The unique practical technique:
 - H.Tsunemi PSD5, E.Miyata PSD6
- measurement of the charge cloud shape: J.Hiraga et al. 1998 JJAP

(Optnics Precision co. ltd.)

material: Au Thickness:13μm hole size:2μmφ hole pitch:48μm

2-dim Gaussian σ=1.5μm

The problems

- Too thin to protect high energy X-rays.(<6keV)
- difficult thicker mesh with small holesize (high aspect ratio)
- not small enough of 2μm φ

How do we investigate for higher X-ray energies?

The BP-1 glass

irradiation of relativistic chargec particle

solid state nuclear track-etch detector

- high sensitivity (s=V_T/V_G)
- high detection threshold :Z/β >50 cone-shaped etchpit with chemical etching
- high-energy nuclear physics, cosmicray physics etc..

construction of BP-1[wt%]

0	Na	Si	Р	Ca	Sr	Ba	total
42.2	1.39	1.06	29.0	0.003	0.045	26.3	100

S.C. Wang et al NIMB (1988)

- Low transmission up to 20keV
- glass --> easy to make it thick

Can we product through-holes?

The novel multi-collimator

Depth v.s. s=V_T/V_G

nano-scale through-holes

- sensitivity: tighten the taper
- etching time: through hole
- initial track :~100nm

Does random distribution become

No!!

- alignment: pattern matching method
- scanning one pixel without move anything.

tiny through-holes & random sampling

The first prototype

Beam experiment @HIMAC

Chemical Etching @KEK

The first trial pieces have been produced successfully!

The BP-1 collimator functions well up to 20keV

performance check with CCD

CCD :Hamamatsu pixel#: 512×512 pixel size 12

BP-1 collimator hole size 5μm /30μm hole #: 10000 /cm²

CCD detection of X-ray through BP-1 collimator

summary and future work

- We have already established the mesh technique.
- Novel multi collimator using BP-1 glass are proposed.
 - Available X-ray energy: 20keV and higher
 - nano-scale hole size
 - easy handling
- The first prototype of the BP-1 collimator was produced.
 - BP-1:15mmx15mmx13mm^t
 - Xe:80-100MeV/u
 - O 2x10⁴ holes/cm²
- Hole diameter is still large:5μm(center), 30μm(surface)
- The first performance verification with X-ray Film was done.
- CCD detection test are ongoing with Fe55.
- CCD application with parallel X-ray beam
- Improvement of the performance of BP-1 collimator : smaller hole/thick glass

summary and future work

