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» What we need to detect

e Charged particle telescopes developed by Charissa

» New charged particle array for nucleon transfer reactions
 Prospects and requirementsfor future developments
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Multistage telescopes used in in-beam studies il - 3 stage telescope

* 50 x 50 mm? silicon

* Thetwo AE stages are
crossed resistive strips

» segmented E array of
25 x 25 mm2 Csl crystals
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Position M easurement:
* by charge division
* highly linear

Position Resolution (0.1-1mm):

o proportional to Tshaping
e proportional to 1/E

R
v (1 * R )
T and Req are temperature and
equivalent serial resistance at the
preamplifer input, 7 is shaping time,
L (R)) arethe strip length (resistance)
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Position M easurement:

* by charge division
* highly linear

Position Resolution (0.1-1mm):

o proportional to Tshaping
e proportional to 1/E
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The Design Challengesfor TIARA™™ for RNB Studies

“no compromises on geometrical efficiency”

® The physics tells us that all angles have particles we wish to
detect so we need to span as much as possible of 4x

® When we work out the achievable energy resolution for the
final states in the nuclei being studied, it is clear that we need
to detect gamma rays in coincidence, as well

® It works best to get the high gamma ray coincidence efficiency
by using (position sensitive) Ge detectors placed very close

® Hence the new detector must be extremely compact — it must fit
within diameter 5-6 cm — any “dead space” is very significant

® The required angular resolution is < 2°
which translates to about 1 mm resolution closest to target

@ It should not attenuate the gamma rays and hence it should
be of low Z material and be a small thickness of material

PO

TIARA



How the TIARA array hasto fit into the rest of the set-up:
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Solution :

® Surround as much as possible of 4t
with position sensitive silicon

® Need to achieve 2° angular resolution

® But make this extremely compact, to give
to give very high gamma-ray efficiency

— | VAMOS

annular silicon with
annular sirips

annular silicon with
annular strips

octagonal barrel,
longitudinally
resistive strips

I I |

(d,p) protons light particles & gammas BEAM-LIKE

/ - both ends of barrel covered
using further silicon strips

e
www.ph.surrey.ac.uk/npg/tiara TlARA* =



Demonstration of angular coverage by calibrations with triple-o. source
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HYBALL — backward sw c ray

6 wedges

Front : 16 strips
Back : 8 sectors
Thickness ~ 400um



PCB FRONT
—— SILICON FRONT

—— PCB REAR CONNECTIONS
PCB REAR
—— SILICON REAR

—— PCB FRONT CONNECTION

Back Surface Viewed from Front
S7.74"

At forward and back angles, we use the

HYBALL Backward Array
design from ORNL

plus a Micron S1+S2 for forward angles
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minimising dead space

Design of barrel 1T
o

all signals from both ends
taken out via downstream end

Technology: 6 Inch Silicon
Design Selected: Custom Microstrip Resistive Division PSD

No. of Detectors: 10 (Including 2 Spare) located in octogon format.
No of Strips: 4

Interanoderesistance: 4Kohm nominal 10 Kohm maximum

PCB package: 98mm x 27.6 mm x 1.6mm nominal TBC

No. of Outputs: 8 Anodes+ Substrate

Connector: Junkosha Miniature Coaxial Cables. Length 50cm
Chip Dimensions: 24.6mm x 96.8mm (clearance 100mm at each end)
Pitch: 5.65 mm

Strip Separation: 100mm

Strip length: 94.8 mm

Equipotentia Lines along PS; Equipotential Pitch Width: 50mm
Tracking width 50mm,

Tracking Bond Pads (Standard): 150x400 mm2, (Corner): 150x200 mm2
Standard Multi Guard Ring Design




Mounting of barrel
around target position
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barrel fully supported and |
all signals taken out \
via downstream flange | -a\

target inserted
by upstream mechanism T| A RA***



re-entrant
aluminium vessel

4 segmented Ge
as close as 45 mm,

€~20% @ 1 MeV

PO
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Geant simulation: first interaction point for E(gamma) = 2.05 MeV
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Data Acquisition
and stream merging
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Experimental Arrangement for Transfer with TIARA
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We have a very successful working system with 82% 4n
coverage with 2° angular resolution
+ we plan to extend by surrounding first barrel with second layer

If we could have very many channels quite easily, would we
still choose resistive strips? (... recall digital methods)

If we use ASICs then how much do we do in the vacuum?
Just preamp? Preamp/Amp/Sample? Full digitisation?

Is it still best (compactness, heat, gamma attenuation)
to bring all the signals out immediately?

Silicon technology with either resistive strips or many
non-resistive strips offers many possible future developments




