

## Fabrication of 3D detectors with

### columnar electrodes of the same

## doping type

<u>Sabina Ronchin</u><sup>a</sup>, Maurizio Boscardin<sup>a</sup>, Claudio Piemonte<sup>a</sup>, Alberto Pozza<sup>a</sup>, Nicola Zorzi<sup>a</sup>, Gian-Franco Dalla Betta<sup>b</sup>, Luciano Bosisio<sup>c</sup>, Giulio Pellegrini<sup>d</sup>

- <sup>a</sup> ITC-irst, Microsystems Division, via Sommarive, 18 38050 Povo di Trento, Italy
- <sup>b</sup> University of Trento, DIT, Trento, Italy
- <sup>c</sup> Physics Department, University of Trieste and IN FN, Trieste, Italy
- <sup>d</sup> Instituto de Microelectrónica de Barcelona, IMB-CNM-CSIC, 08193 Bellaterra, Barcelona, Spain

### Outline



- Introduction
- Concept of a Single-Type Column 3D detector
- Fabrication of 3D detectors at ITC-irst
- Layout of the first batch
- Preliminary electrical results
- Conclusion



production of 3D devices very critical and very expensive.

[1] S.I. Parker, C.J. Kenney, J. Segal, Nucl. Instr. Meth. Phys. Res. A 395 (1997) 328

#### **3D-stc detectors proposed at ITC-irst**<sup>[2]</sup>



n<sup>+</sup> electrodes



Recently, Semi-3D radiation detectors with p+ columns in n-type substrates were proposed by Eränen et al. [3]

- <sup>[2]</sup> C. Piemonte, M. Boscardin, G.-F. Dalla Betta, S. Ronchin, N. Zorzi, Nucl. Instr. Meth. Phys. Res. A 541 (2005) 441
- [3] S. Eränen, T. Virolainen, I. Luusua, J. Kalliopuska, K.Kurvinen, M. Eräluoto, J. Härkönen, K. Leinonen, M. Palviainen and M. Koski, 2004 IEEE Nuclear Science Symposium, Conference Record, paper N28-3, Rome (Italy), October 16-22, 2004





**Etching and column doping** performed only once

No hole filling

#### Holes not etched all through the wafer



No need of support wafer.

Bulk contact is provided by a backside uniform p+ implant (single side process)

### **Fabrication process (1)**





Sabina Ronchin



Sabina Ronchin

PSD7





"Large" strip-like detectors

Small version of strip detectors

 Planar and 3D test structures

"Low density layout" to increase mechanical robustness of the wafer Mask Layout-Test structures





#### Standard (planar) test structures



Sabina Ronchin

Liverpool, 12-16 sept. 2005



### Fabrication run: main characteristics



- FZ (500 μm) ρ>5.0 kΩ
- Cz (300μm) ρ>1.8 kΩ

#### Surface isolation:

- p-stop
- p-spray



Sabina Ronchin

### Electrical Characterization (1) Standard (planar) test structures



| Parameter | Unit        | typical range |           |
|-----------|-------------|---------------|-----------|
|           |             | p-spray       | p-stop    |
| Nd        | [1E12 cm-3] | 1 - 3.5       |           |
| Vdep      | [V]         | 200 - 500     |           |
| lleak     | [nA/cm2]    | 1 - 20        |           |
| Vbreak    | [V]         | 60 - 140      | 155 - 175 |
| Тох       | [nm]        | 570 - 585     | 860 - 875 |
| Qox       | [1E10cm-2]  | 9.5 - 11      | 6 - 9.6   |
| So        | [cm/s]      | 1.3 - 1.7     | 7 - 7.5   |

Different sub-types and thicknesses 2% to 13% variation on single wafer

Ileak measured Below full depletion due to Vbreak

electrical parameters compatible with standard planar processes

DRIE does not endanger device performances



# Electrical Characterization (3)



#### **Strip detectors**

#### **Current distribution @ 40V of 70 different devices**



### Conclusions



A new type of 3D detector has been conceived which leads to a significant simplification of the process: hole etching performed only once
no hole filling
no wafer bonding

First production is completed:

Good electrical parameters (DRIE does not endanger device performances)
 Low leakage currents < 1pA/column and BD ~ 50V for p-spray and >100V for p-stop in 3D diodes
 Good performances of strip detectors (Current/hole < 1pA/column for 93% of detectors)</li>

Accurate analysis of CV measurement results is in progress with the aid of TCAD simulations





To increase the electric field strength one can act on the substrate doping concentration

#### Lateral depletion-voltage





