Effects of metallization on TIBr single crystals for detector applications

UNIVERSITY OF HELSINKI

V. Kozlov^a, M. Leskelä^a, M. Vehkamäki^a and H. Sipilä^b

^a Department of Chemistry, University of Helsinki, Finland
 ^b Oxford Instruments Analytical Oy, Espoo, Finland

TIBr properties

- high atomic numbers Z: 81+35
 stopping power
- density (7.56 g/cm3)
 => compact device
- bandgap (2.68 eV) => room temperature
- inter-pixel resistance ~500 GΩ (gap 100µm, 50V)
 - => 2D-array detector*
- optical transparency: 440nm 50µm => scintillator?

*Owens et al., Nucl. Instr. and Meth. A 531, 18 (2004)

Material problems

- Purity
- Crystal quality
- Manufacturing process

(Knoop hardness of 12 kg/mm2)

• TIBr - toxic compound

Metallization methods

Chemical :	photographic process, Pd-dielectrics
	\Rightarrow possible water inclusion $\Rightarrow X$
Glue:	Ag- and graphite-paste
	=> crater formation, if poor crystal quality
	properly treated samples: 2.5 kV/cm
Physical:	vapour (PVD),
	electron beam and
	sputtering deposition methods =>
Melt:	metal melting on TlBr surface =>

Interaction at the interface

"Adhesion": physical deposition

"Diffusion" physical or melt methods

"Compound" melt deposition or physical + annealing

Metal – TI halide interface parameters

mp, °C Metal Tensile Stability* Electrostrength* negativity TlBr (mp = 460° C) 1083 24 1.9 Cu Atm 962 27 Atm Ag 1.9 1064 27 2.4 Au Atm "Adhesion" 419 13 1.6 Zn 36 Cd 321 1.7 1.5 Al 660 Split. Bad 18 1.7 Good In 157 "Diffusion" Tl 304 1.8 1.8 Sn 232 6 18 Good Ti 1660 1.5 "Compound" Cr 1857 14 Good 1.6 1.8 Fe 1535 23 Good Atm Co 1495 22 Good 1.8 Ni 1.8 22 1453 Atm 1.5 Mn 1244 Х Bad Mg Х 1.2 649 Bad

Abr.: Atm. - unstable in atmosphere,Split. – SplittingX – Chemical reaction

*Me-thickness – 0.5 μm units - MN/m² [6, 8]

Results: Vacuum deposition

Electron beam evaporation:

- thickness 25 and 40 nm Ti, Cr and Al
- ⇒ Ti and Cr: good electrical contacts, stable for ~year in a laboratory environment
- \Rightarrow AI: stable during all measurements for **several days**

Fe and Ni – direct contact with **TIBr molten**

- => No reaction, if pure metals and complete degassing of system
- => Ni-boat was used for the melting of TIBr powder
- Output: Ti, Cr, Fe and Ni elements were inert to TIBr
 - Ti and Cr could be used as reliable electrodes
 Al ?

Results: AI/TIBr interface

TIBr was deposed on a clean AI surface: (surface temperature control)

- t < 100°C => fine films, R% spectra => stable for ~year, XRD
- t > ~150°C => TI-drops on AI => amorph. phase + TI peaks

Al(solid) + 3TlBr(gas) => 3Tl(drop) + AlBr3(gas)

Output: no heating, low current

Results: TI/, In/, Sn/TIBr interfaces

TI, In and Sn were shortly melted at ~310 °C: (N_2 atmosphere)

- Sn: no reaction, no underlayer
- In: Yellow underlayer compound "pressed drop" on surface ~
- TI: Brown underlayer compound easily peeled off from TIBr
 - + New process + annealing 20h
 - => active reaction

Output: TI - aggressive with TIBr

Results: In/,Sn/TIBr interfaces

Results: In/TIBr interface

In: *I-V* curves of In-TIBr-Layer-In
 => rectifier effect was observed

(-)

 High current connections:

Breakdown during further I-V & CV at ~200 V/cm

Compare: working field 500 V/cm, Owens et al., Nucl. Instr. and Meth. A 531, 18 (2004)

18.0n 15.0n **iPPM** 12.0n iMMP Current, nA 9.0n 6.0n 3.0n 0.0 -3.0n -6.0n -20 -100 -80 -60 -40 0 20 40 -120 60 Bias Voltage, V

SL04: Signal to OldDrop of In.

Output: low crystal quality, inner boundaries still limit the use of TIBr detector

Conclusions

- Ti, Cr, Fe and Ni elements were inert to TIBr and Ti and Cr could be used as reliable electrodes.
- Al contact can be used for tests at low current without heating.
- TI is reacting aggressively with TIBr.
- Sn electrode was reliable at our conditions.
- In was shown to form intermediate layer compound.
- In/TIBr interface possesses rectifier properties; however, the crystal quality currently limits the use of this interface.

Acknowledgements

 Crystal growth: I.S. Lisitsky and M. Kuznetsov (GIREDMET, Russia)

• Finnish Technology Agency **TEKES**

UNIVERSITY OF HELSINKI

END

• Thank You!