

CDF Run II Silicon Detector

Ankush Mitra Academia Sinica

On behalf of the CDF Run II Silicon Operations Group

Seventh International Position Sensitive Detectors Conference 12-16 September 2005 Liverpool, UK

Order of Talk

Introduction

Tracking for dummies

Commissioning

Detector Longevity

Conclusions

Tracking for Dummies

- Use magnetic field to bend charged particle trajectory
- Amount of curvature depends on particle momentum
- Use position sensitive silicon sensors
 - Reconstruct track
 - Measure momentum (& charge)
- 16/09/2005

Tracking for Dummies

PSD7 - Ankush Mitra, Academica Sinica

Tevatron: Run II

Proton-AntiProton Collider

▶ √s = 1.96 TeV

Highest Energy Collider in the World (...until LHC)

Current Luminosity ≈10³² cm⁻² s⁻¹

- \blacktriangleright Aim to get to 2-4×10³²
- Collisions every 396 ns

CDF II Detector

CDF Silicon Detector

Run II Silicon

- 7-8 Silicon Layers
- 722,432 Channels / 704 Ladders/ 5644 Chips
- Largest operating detector in HEP
- Silicon detector comprised of:
 - **L**00
 - ►SVX II
 - ► ISL

Detector is inaccessible until 2009

It might as well be in space!

SVX II

The core of the CDF Silicon Detector

- 5 layers of double-sided silicon
 - 3 layers with axial & 90^o stereo strips
 - 2 layers with axial & 1.2° stereo strips
- Strip pitch from 60μm to 141μm
- Used in L2 displaced Track Trigger
 - Tight alignment tolerances
 - Fast wedge-wide Readout -(25Khz)

PSD7 - Ankush Mitra, Academica Sinica

Intermediate Silicon Layer (ISL)

- One central layer (|η|<1)
 Links tracks from SVX to Wire-Chamber (COT)
- Two forward layers
 (1<|η|<2)
 - Allows tracking at high η
- Strip Pitch:
 - ► 112µm (axial & stereo)

PSD7 - Ankush Mitra, Academica Sinica

Layer-00 (L00)

Precision position measurements

- ▶ 50µm effective strip pitch
- Low Mass: 0.6%-1.0% X₀
- Support structure mounted directly on Be beam-pipe

Rad-Hard Silicon

- Can be biased to 500V
- Likely to outlive inner most SVXII layer
- Vital for **B** physics Especially B_s oscillations

PSD7 - Ankush Mitra, Academica Sinica

Commissioning

- R&D: ≈ 4 Years
- Assembly + Installation:
 ≈ 1 Year
- Detector Commissioning:
 ≈ 1.5 Years

During commissioning various problems encountered:

- Blocked Cooling lines in ISL
- Wirebond Resonance Problems
- Beam Incidents
- Noise pickup on L00

PSD7 - Ankush Mitra, Academica Sinica

Wirebond Resonance Problems

- Observed loss of data & power to Z sides of ladders
 - Found to occur under anomalous trigger conditions

Failure due to wirebond resonances

- Wires orthogonal to magnetic field
- Wires feels Lorentz force during readout
- If frequency is right, wires resonate and break

PSD7 - Ankush Mitra, Academica Sinica

16/09/2005

Wire Motion

Resonance Protection System

- Dedicated Card to monitor readout commands from SRC: *GhostBuster*
 - Immediately stops data taking if resonance condition detected
- Has successfully prevented any further loss

PSD7 - Ankush Mitra, Academica Sinica

Current State of the Detector

L00 + SVX + ISL Ladders

Detector is in steady state

- ▶93% is powered
- ▶ 84% have <1% Error Rate

Used in regular data taking

Physics Performance

80

60

40

20

- **Charge Collection Efficiency > 99%**
- Single Hit Efficiency > 90%
- **Resolution: 9µm**
- Signal-to-Noise Ratio

SNR	RΦ	Ζ
L00	10:1	-
SVX	14:1	12:1
ISL	12:1	12:1

Lifetime Issues

- SVX II was to be replaced after 2fb⁻¹ (2-3 years of operation)
- Run IIb silicon cancelled
 - Now have to survive to 2009 (4-8 fb⁻¹)

What determines lifetime

- Signal-to-Noise is too low
- Unable to fully deplete Silicon ladders

Lifetime Projections

According to predictions and current data, we seem to be following the optimistic trend

Hopefully we'll survive to 2009

prediction: S. Worm, "Lifetime of the CDF Run II Silicon," VERTEX 2003

Conclusions

- Despite the long commissioning, the CDF Silicon detector is fully operational
- The Silicon detector is used in regular data taking
- The lifetime predictions are encouraging. Hopefully the detector will survive to 2009

Backup Slides

PSD7 - Ankush Mitra, Academica Sinica

Tevatron Performance

• Store initial luminosity steadily increasing

- Greater luminosity expected once Electron Cooling has been commissioned
- Run I ended at 25E30 cm⁻² s⁻¹
- Run II expects to reach 200-400E30 cm⁻² s⁻¹

Almost 1fb⁻¹ on tape Run I only acquired 110 pb⁻¹

PSD7 - Ankush Mitra, Academica Sinica

16/09/2005 21

Beam Incidents

- ITeV beams have a lot of energy!!
 - Can cut through solid steel

Quenches

If beam is not stable it can quench the Tevatron's superconducting magnets

Kicker Prefires

By far, most serious incident (...see next slide)

PSD7 - Ankush Mitra, Academica Sinica

Kicker Prefires

- If beam has to be dumped, Kicker fires in abort gap
- If Kicker spontaneously fires, sends uncontrolled beam into CDF
 - Worst incident: 31 chips lost (out of 3168)
 - But many did recover with time
 - 18 Kicker Prefire incidents since the start of Run II
 - Overall rate is small but is serious when it occurs

Will add extra collimators during next shutdown

Kicker Prefires

2001-2005

- Kicker Prefires seems to have a preference for spring
 - 🕨 Reason: Unknown
 - May be a coincidence ?
- Allegedly, LHC will use same kicker system

PSD7 - Ankush Mitra, Academica Sinica

CAEN Power Supply Problems

From time-to-time, power supply crate goes into undefined modes during data-taking (beam)

Apparently, Power-Supply crates are not Rad-Tolerant

Failure Modes:

- Spontaneously turns off
- Gives false readings for ladder & chip currents
- Communication between crates and monitoring systems fails
- Only solution (so far) is to reset crate (Hockerisation)

One of the major contributors to down-time during data-taking

Dense Optical Interface Module (DOIM)

InGaAs/InP Edge Emitting Diode lasers

- 12 Channel Diode Array (Only 8 data lines + 1 Clock line are used)
- 53MBit/S per Laser
- **>>** λ = 1550nm
- Rad-Hard: No deterioration in output signal at 200kRad
- Used to transmit data from ladder to Silicon DAQ

L00 Noise Pickup

Due to space constraints, L00 readout is at high radii.

- Large pickup on leads
- Non-Uniform pedestals: DPS cannot be used

L00 readout completely

Pedestal subtraction now done offline

Chebyshev Fit to Pedestal

PSD7 - Ankush Mitra, Academica Sinica

Blocked ISL Cooling Lines

- Central ISL could not be cooled
- Glue blocked lines at Al elbows
 - Observed with endoscope
- De-tuned" industrial wielding laser used to cut through blockage

PMT used to distinguish glue from Al tube

Laser cut through 11/12 lines

PSD7 - Ankush Mitra, Academica Sinica

Bias Scans ∙25 Peak Charge (ADC) 20 15 10 0⊾ 0 10 20 30 40 50 60 70 80

Bias Voltage (V)

Vary bias on ladders:

- With beam: Monitor change in collected charge
- No beam: Monitor change in noise (used in practice)

Used to monitor depletion voltage

PSD7 - Ankush Mitra, Academica Sinica

Developments: Clock Cloning Card (CCC)

SVX3D Feature:

- Powers up uninitialised
- Current consumption rapidly increases with no clock
- The Silicon is tied to the Tevatron Clock. If this is lost, the entire detector "trips" due to above *feature*
- CCC generates a clock if the Tevatron clock is not present
 - Prevents the detector tripping
 - Avoids unnecessary thermal cycles

Developments: Bit-Booster

Light from some DOIM-Lasers is below 50µW design threshold of the DOIM-Receivers

Current Solutions

- Replace the DOIM-Receiver: No guarantee of success
- Adjust DOIM-TX voltage: Affects entire wedge. Always the risk of damaging an entire wedge

DOIM-Lasers emit at 1550nm: Standard Telecoms Wavelength

- Off-the-shelf Telecoms receivers are sensitive to <1µW and operate at Giga-Bits
 - More than sufficient as replacement receivers for CDF silicon

SVX3D Chip

- All Silicon ladders readout by SVX3D chip
- Integrated Analog Front-End and Digital Back-End
- Dead-timeless:
 Can collect charge and digitise simultaneously
- Honeywell Rad-Hard CMOS 0.8μm Process
 - 4 MRads with Co⁶⁰ Source
 - 15 MRads with 55MeV Proton Source
- Fast: Capable of running at 132ns clock rates
- Dynamic Pedestal Subtraction
 - Subtracts common mode noise
- Sparsification
 - Removes channels below programmable threshold
 - Reduces data-rate and readout time

PSD7 - Ankush Mitra, Academica Sinica

53MBytes/s Data Out Digital **Digitisation & Sparsification 47 Deep Analog Pipeline** Analog **128 Analog Integrators 128 Silicon Strips** 16/09/2005 32

Simplified Silicon DAQ (for 1 wedge)

Controlled by Master "Silicon Readout Controller"

Sends timing & control signals to chips

Wedgewide Readout

► Allows SVX (3168 chips / \approx O(100kB) to be readout in \approx 70µs

PSD7 - Ankush Mitra, Academica Sinica

Silicon Operations

- The Silicon detector is not a "plug-N-play" device.
- The Silicon is NOT accessible until end of CDF
- Requires a dedicated team to provide 24/7 support and maintenance
- Daily operation requires 5-10 FTE
- With >700K channels, you have to aggressively attack all problems
 - Otherwise it snowballs very quickly

PSD7 - Ankush Mitra, Academica Sinica

Silicon Vertex Trigger (SVT)

For the first time, a silicon detector is used in the online (L2) trigger

The SVT takes data directly from the SVX

- Does fast track reconstruction using a set of templates
- Looks for displaced vertices
- Great for heavy quark tagging

Uses 4/5 ladders in one SVX wedge

Requires good SVX alignment