Modification of a Medical PET scanner for PEPT Studies

Alireza Sadrmomtaz^{1,2}, David J Parker¹

¹School of Physics and Astronomy, University of Birmingham, Edgbaston, B15 2TT, UK ²Department of Physics, Gilan University, Rasht. PO Box 41365-1159, Iran

- PET and PEPT
- Previous PEPT detector systems
- Development of modular PEPT system
- Results
- **Future Plans**

PET (Positron Emission Tomography)

- PET _____ imaging concentration of radioactive tracer
- **PET** is widely used in medicine
- **At Birmingham, PET used to study engineering processes**

PET CHARACTERISTICS

- **1-Slow process**
- 2-Requires at least 10 ⁶ events to produce an image
- 3- Random and scatter events distort the image and can only partially be corrected after backprojection

PEPT (Positron Emission Particle Tracking)

- 1-This technique was invented at the University of Birmingham
- 2-In PEPT a single tracer particle is introduced into the system. The location of this particle tracer can be determined from detection of a small number of pairs of back to back gamma rays, so that this can be achieved many times per second and the track of a particle can be reliably followed.

3-Powerful tool for studying the behaviour of granular materials in systems such as mixers and fluidised beds.

PEPT CHARACTERISTICS

- 1-Single positron emitting particle is used
- 2-Fast process
- 3-Needs 10² events to calculate the location of tracer with accuracy around 1mm
- 4-Random and scatter events will be discarded and do not contribute to calculation of location
- 5-PEPT results show velocity and dynamical behavior of the system under investigation

PEPT detector systems

1984-1999 Multiwire Proportional Chambers

1999 Replaced by ADAC gamma camera

ADAC Camera

• Consists of two digital gamma camera heads which are used in coincidence. Each head contains a single sodium iodide crystal 590x470x16mm³ backed by 55 PMTs

Spatial resolution(PET)
Efficiency each head
Max true coincidence rate

6mm 23% total/16% photopeak 100kcps

- 1- Limited count rate
- 2-Maximum head separation 75cm
- **3-Not transportable**

ECAT 931 Scanner

Installed at Hammersmith Hospital 1987
Presented to Birmingham University 2002
Installed in Positron Imaging Centre 2003-4

Ecat scanner 32 detector buckets

arranged in two rings
each ring 16 detector buckets

Each bucket———— 4 blocks

Each block — 32 bismuth germanate crystals

8×4 array

dimension 6x12mm² and 30mm thick

coupled to 4 PMTs

Total number of detectors → 4096

Idea

Reconfigure ECAT 931 buckets as PEPT system

- 1-Higher count rate
- 2-Modular
- 3-Flexible geometry allowing PEPT tests on larger systems
- **4- Mobility**

New geometry

- **■** Two rectangular arrays of buckets
- Buckets spaced to maximise field of view without allowing any gaps

Horizontal centre to centre spacing — 380 mm, with a gap of 180mm between buckets

Vertical centre to centre spacing

→100mm, with a gap of 44mm between buckets for this work (can be adjusted)

Number of buckets used

14, four pairs mounted on one half frame and three pairs on the other

Vertical variation in sensitivity

- **Diagram 1 shows the variation of measured sensitivity along the central vertical axis**
 - **"**Highest sensitivity obtained was around 2×10⁻² cps/Bq

Horizontal variation in sensitivity

- Diagram 1 shows the variation of sensitivity along a horizontal axis
- The efficiency achieved for each block was approximately 50%

Count rate

Diagram 1,2 shows the variation of singles and coincidence count rates with activity (measured using a decaying source)

■ The highest coincidence count rate was about 250 kcps (2.5 times that of ADAC)

Source on a turntable

- Diagram shows PEPT results from tracking a source on a turntable mounted at level F and rotating at approximately 12rev/s (6 m/s)
- Approximately 110 kevents/s were recorded giving approximately 1100 PEPT locations per second with an accuracy of 1.4 mm in 1D, 4.7mm in 2D and 5mm in 3D

Compared with ADAC

	ADAC camera	New Configuration
Singles efficiency —	23%	50%
Max true coincidence rate(kcps) —	→100	250
Accuracy for PEPT(1D)	→ 1mm	1.4mm
PEPT locations/s	→ 300	1100
Speed of particle (m/s)	2	6

Future plans

- Spread out blocks within each bucket to reduce variations in sensitivity
- Use more buckets (up to 32)
- PEPT measurements on large vessels
- This modular system is transportable, and will be used to perform PEPT studies outside Birmingham