
SSL Delivery System

Poulhiès Marc

marc.poulhies@cern.ch

CERN/EPFL

SSL Delivery System – p. 1

Summary

• Current system
◦ How it works
◦ Security issues

• Proposal for next system
◦ Requirements
◦ How it works
◦ Security improvements
◦ Weak points

SSL Delivery System – p. 2

Current System

Uses standards/well known things:
• SSH/SCP when secure connections are needed
• GPG for data encryption
• HTTP for data transport when secure connections are not

needed

SSL Delivery System – p. 3

How it works

“presentations”

Node

Administrator

clear data
scripts

Key Server Web Server

SSL Delivery System – p. 4

How it works

Admin “prepares the machine”

Node

Administrator

SSH

clear data
scripts

GPG’d data

Key Server Web Server

SSL Delivery System – p. 4

How it works

Node gets its GPG key-pair

Node

Administrator

clear data
scripts

SSH

Key Server Web Server

SSL Delivery System – p. 4

How it works

Node gets some secured files

Node

Administrator

clear data
scripts

GPG’d data
HTTP

Key Server Web Server

SSL Delivery System – p. 4

How it works for updates

“presentation”

Administrator

Node

Node

clear data
scripts

GPG’d data

Key Server Web Server notd

SSL Delivery System – p. 5

How it works for updates

The admin updates files

Administrator

Node

Node

clear data
scripts

GPG’d data

Key Server Web Server notd

SSH

SSL Delivery System – p. 5

How it works for updates

The “notd” notifies nodes

Administrator

Node

Node

Key Server Web Server notd

SSH

TCP/UDP

SSL Delivery System – p. 5

How it works for updates

Nodes get their files

Administrator

Node

Node

clear data
scripts

GPG’d data

Key Server Web Server notd

SSL Delivery System – p. 5

Security issues

System suffers from different security problems:
• IP/MAC as identifier
• No control on downloads
• Private part of GPG keypair duplicated
• No authentication on data

SSL Delivery System – p. 6

IP as identifier

Presentation

Web Server

Key Server

Bob
192.168.0.1

Eve
192.168.0.2

SSL Delivery System – p. 7

IP as identifier

Bob gets its GPG KP

Web Server

Key Server

Bob
192.168.0.1

Eve
192.168.0.2

SSL Delivery System – p. 7

IP as identifier

Eve spoofs Bob’s IP and gets Bob’s GPG KP

Web Server

Key Server

Bob
192.168.0.1

Eve
192.168.0.1/2

SSL Delivery System – p. 7

IP as identifier

Both Bob and Eve can download files for Bob

Web Server

Key Server

Bob
192.168.0.1

Eve
192.168.0.2

SSL Delivery System – p. 7

Other problems

• If a machine can download it’s GPG key, it can also
download all other’s keys and therefore download/read all
files on the data repository.

• GPG keys are duplicated (on server and on client). This
was a previous requirement but is not needed anymore.

• Node getting a secured file can verify this file was really for
him as he can read it using its private key, but he can’t verify
who made this file.

SSL Delivery System – p. 8

New system

The new system must correct or propose workarounds for
previous problems.
After a talk with security team, it was decided that it will be kept
as simple as possible:

• a “unique” computer for server/data repository.
• HTTPS:

◦ for secure data transport
◦ for client/server authentication

• SSH for interactive connections (administration interface)

SSL Delivery System – p. 9

Overview

Quick overview of the new system:

Main Server

Nodes

HTTPS

SSH

Admin

SSL Delivery System – p. 10

Overview (cont.)

There are differents parts in the system:
• the configuration (CDB)
• the preparation (pre-install of the nodes)
• the node initialization (post-install of the nodes)
• the daily use

daily
use

post
install

pre

install
Config

SSL Delivery System – p. 11

post-install
daily

use

post

install

pre

install
Config

1. key generation + certificate request
creation + server authentication

2. client authentication (weak) + check
node is allowed + reply with a signed
certificate

3. The node is now able to authenticate
itself with its certificate.

Node Main Server

CRT req

CRT

1

2

3

First client authentication is weak because the server can only
check node’s identity with its IP. The checks in step 2 include the
time-window mecanism.

SSL Delivery System – p. 12

post-install
daily

use

post

install

pre

install
Config

Client side uses:
• curl command line for HTTPS communications with server.
• openssl command line for certificate handling.

Server side uses:
• Apache 2 with mod_ssl for HTTPS.
• mod_python and openssl command line for the certificate

authority and various checks (ACL, DNS lookups, ...)
Apache

openssl

CA

node

SSL

Python

server

SSL Delivery System – p. 13

daily use
daily

use

post

install

pre

install
Config

SSL Delivery System – p. 14

daily use
daily

use

post

install

pre

install
Config

• node connects to server
◦ client verifies server’s certificate
◦ server verifies client’s certificate

• node requests a file with a URL:
/files/sensitive.tar.gz
◦ server checks for a node specific sensitive.tar.gz,

if not
◦ server checks for a cluster specific
sensitive.tar.gz, if not

◦ server checks for a global sensitive.tar.gz

All these operations are done with mod_ssl and mod_rewrite,
so they should not be a big overhead.

SSL Delivery System – p. 15

Node Configuration
daily

use

post

install

pre

install
Config

Define each item to be securely retrieved (to be integrated in
CDB profile):

• a unique name (passwd, ssh_keys,grid_cert,...)
• a method: script or file
• a level: node, cluster or global

SSL Delivery System – p. 16

Node Configuration
daily

use

post

install

pre

install
Config

Here’s a possible informations schema (this XML view is just an
example) :
<nlist name="item1">
<string name="method">script</string>
<string name="level">cluster</string>

</nlist>

• The script method is used when the clear data are to be
generated; for example it may be possible to store clear
passwords in some file and then, crypt(or hash,...) these
to create a usable passwd file.

• The cluster level is used when you don’t want to use the
possible node specific files for this item.

SSL Delivery System – p. 17

pre-install
daily

use

post

install

pre

install
Config

This must be done before a node gets installed. The basic idea
is :

• admin designates which nodes will be installed
• system asks the admin to give some input (scripts, files)

System can find the scripts/files location based on informations
from the node’s CDB profile.
System will also take care of time-window and/or ACL for
certificate requests.

SSL Delivery System – p. 18

pre-install
daily

use

post

install

pre

install
Config

Before the admin can start the pre-install script, he must put the
script for item1 on the server. As we are dealing with cluster
wide information, the script will be in
$SCRIPT_ROOT/cluster1/default/item1/.
It will have its own directory. It must be called run and will be
invoked with some parameters (node’s hostname, cluster’s
name, level and the output path).

Scripts

Files

Prepare Web Serverdisk

SSL Delivery System – p. 19

pre-install
daily

use

post

install

pre

install
Config

Only then, the admin should try to run the pre-install process
(custom shell):
[hostname?]> node_hostname
Method type for item1 is script, scope: cluster
-> got ./scripts/cluster1/default/item1/

Updating info for /cluster1/item1.tar.gz
-> OK

Found 1 item(s)

The script will be invoked with parameters:
-l <level> -h <hostname> -d <output>

Only the output is mandatory. It will be a file path pointing inside
a different tree than the scripts’ tree.
When method is file, the item file is to be copied to the correct
directory.

SSL Delivery System – p. 20

script tree

.
|-- cluster1
| |-- default
| | |-- item1
| | | ‘-- run
| | ‘-- item2
| | ‘-- run
| |-- host1
| | ‘-- item1
| | ‘-- run
| ‘-- host2
| ‘-- item2
| ‘-- run
‘-- cluster2
...

SSL Delivery System – p. 21

files tree

.
|-- cluster1
| |-- host1
| | ‘-- item1.tar.gz
| |-- host2
| | ‘-- item2.tar.gz
| |-- item1.tar.gz
| ‘-- item2.tar.gz
‘-- cluster2
...

SSL Delivery System – p. 22

Quattor (NCM)

One goal of the new system is to ease the addition of new file
(don’t want to modifiy the system for each file). One way for
doing so would be to embed deployment instructions with the
files themselves (in a way similar to .deb/.rpm packages).
The instructions should be a shell script doing as less as
possible.
The software part that will take care of it will be a NCM
component.

sensitive
files

deployment
instructions

Secure delivery
NCM

Comp.

SSL Delivery System – p. 23

Versioning & updates

Every item has a version number so that the software (NCM
component) knows if it needs to request the item or not (on
updates for example).
It must keep current installed versions. This can be done in a
text file:
item = version

NCM

Updated
profile

local
version
track

secure files
requests

SSL Delivery System – p. 24

Download count & time window

As the first node authentication is weak (only based on IP
address), some actions are taken to minimise this weakness:

• for a given host, only one certificate can be issued. If there
are some other requests for the same host, first certificate
will be revoked and a warning transmitted to admins.

• certificate requests can only be sent inside a time window.
Requesting a certificate outside this time window will be
forbidden and a warning is also transmitted to admins.

SSL Delivery System – p. 25

comparison (node boostraping)

Old New
Server

Node

SSH

Server

Node

HTTPS

- weak client auth

- no server auth

- keys duplication

- weak client auth

+ server auth

+ no private data on network

SSL Delivery System – p. 26

comparison (daily use)

Old New
Server

Node

HTTP
+

GPG

Server

Node

HTTPS

+ recipient unicity

- no client authentication

- no issuer authentication

+ client auth

+ server auth

SSL Delivery System – p. 27

comparison (cont)

Other differences of interest:
• New system won’t duplicate information. If you have the

same file for all cluster’s node, there will be one file on the
server. This was not true with previous system as every file
was GPG’ed for every hosts.

SSL Delivery System – p. 28

Known weaknesses

• The biggest one: if the main server is compromised, all
sensitive informations stored are compromised.

• Scale:
◦ tested with 50 nodes
◦ more tests needed

SSL Delivery System – p. 29

This is the end!

Questions?

SSL Delivery System – p. 30

Prototype example

• Apache configuration
• Server scripts
• Client scripts

SSL Delivery System – p. 31

Apache conf (SSL)

Only one server, listening to SSL requests only. Two main
directories:

• CA/: for requesting a certificate. No client authentication
required.

• rfiles/: directories with sensitive files. Client
authentication required.

In both case, client must check server’s identity.

SSL Delivery System – p. 32

Apache conf (SSL) (cont)

Python handling for certificate requests:
<Directory /var/www/html/https/CA>

AddHandler python-program .py
PythonHandler mod_python.publisher
PythonDebug On

</Directory>

And the python script:
def send(req, csr):

...
csr.write(csr.value)
...
os.popen(openssl ca -batch -config ca.conf ...)
...
return crt.read()

Request via: https://serv/CA/get_crt.py/send (POST
the CSR).

SSL Delivery System – p. 33

Apache conf (SSL) (cont)

SSL access control:
<Directory /var/www/html/https/rfiles>

SSLVerifyClient require
SSLRequire %{SSL_CLIENT_S_DN_CN} eq %{REMOTE_HOST}

</Directory>

along with:
SSLCertificateFile /.../server.crt
SSLCertificateKeyFile /.../server.key
SSLCACertificateFile /.../ca.crt

SSL Delivery System – p. 34

Apache conf (rewrite)

Goal is to check, in this order, for a particular file in different
directories.
Different component for this:
a hostname to cluster map:
lxplus019.cern.ch lxplus
lxplus020.cern.ch lxplus
lxplus023.cern.ch lxplus

SSL Delivery System – p. 35

Apache conf (rewrite) (cont)

Simple denying filtering (example):
RewriteRule ^/rfiles.*$ - [F]
RewriteRule ^/files/.*/.* - [F]
For /files/foo→ /rfiles/cluster/host/foo:
RewriteCond %{DOCUMENT_ROOT}/rfiles/${NodesToClusters:\

%{REMOTE_HOST}|global}/%{REMOTE_HOST}/$1 -l [OR]

RewriteCond %{DOCUMENT_ROOT}/rfiles/${NodesToClusters:\

%{REMOTE_HOST}|global}/%{REMOTE_HOST}/$1 -f

RewriteRule ^/files/(.*)$ /rfiles/${NodesToClusters:\

%{REMOTE_HOST}|global}/%{REMOTE_HOST}/$1 [L]

Same for :
• /files/foo→ /rfiles/cluster/foo:
• /files/foo→ /rfiles/foo:

SSL Delivery System – p. 36

Server scripts

Allready saw (part of) the certificate handling script. Another
script is used for the preparation. Too long for a complete
description:

• hostname as argument
• XML input (from machines’ profiles) handled by SAX parser.
• simple script to search for specific file/script. Child scripts

invoked with correct arguments.
Included with a custom login:
[hostname?]> lxplus001.cern.ch

Method type for passwd is script, scope: cluster

-> got ./scripts/lxplus/default/passwd/

Updating info for /.../rfiles/lxplus/passwd.tar.gz

-> OK

Method type for sshk is file, scope: node

Please put the file in [/.../rfiles/lxplus/lxplus001.cern.ch/sshk.tar.gz]

Found 2 item(s)

SSL Delivery System – p. 37

Client scripts

Two scripts:
• one for requesting a certificate
• one for requesting a file

Certificate script:
...
openssl genrsa -out key.out 1024
openssl req -new -batch -key key.out -out csr.pem
...
curl -s -f --cacert ca.crt\

https://serv/CA/get_crt.py/send\
-F "csr=@csr.pem;type=text/plain" -o node.crt

...

SSL Delivery System – p. 38

Client scripts (cont)

File request script:
curl -s --cacert ca.crt "https://serv/files/foo"\

-E client.pem -o foo

SSL Delivery System – p. 39

	Summary
	Current System
	How it works
	How it works
	How it works
	How it works

	How it works for updates
	How it works for updates
	How it works for updates
	How it works for updates

	Security issues
	IP as identifier
	IP as identifier
	IP as identifier
	IP as identifier

	Other problems
	New system
	Overview
	Overview (cont.)
	post-install input {4steps-pi.tex}
	post-install input {4steps-pi.tex}
	daily use input {4steps-nu.tex}
	daily use input {4steps-nu.tex}
	Node Configuration input {4steps-nc.tex}
	Node Configuration input {4steps-nc.tex}
	pre-install input {4steps-prei.tex}
	pre-install input {4steps-prei.tex}
	pre-install input {4steps-prei.tex}
	script tree
	files tree
	Quattor (NCM)
	Versioning & updates
	Download count & time window
	comparison (node boostraping)
	comparison (daily use)
	comparison (cont)
	Known weaknesses
	This is the end!
	Prototype example
	Apache conf (SSL)
	Apache conf (SSL)
(cont)
	Apache conf (SSL)
(cont)
	Apache conf (rewrite)
	Apache conf (rewrite)
(cont)
	Server scripts
	Client scripts
	Client scripts (cont)

