
Workload Management: the CMS way Problems and lessons learned Summary

CMS: Workload management and CRAB

Stefano Lacaprara

Department of Physics
INFN and University of Padova

ARDA Workshop, 7/8 march 2005

Workload Management: the CMS way Problems and lessons learned Summary

Outline

1 Workload Management: the CMS way
General Architecture
Present
Future

2 Problems and lessons learned
CMS SW deployment
Job clustering
Data discovery and Location
Access to Local Data
Input Sandboxes
Output handling
Users Support

3 Summary

Workload Management: the CMS way Problems and lessons learned Summary

Outline

1 Workload Management: the CMS way
General Architecture
Present
Future

2 Problems and lessons learned
CMS SW deployment
Job clustering
Data discovery and Location
Access to Local Data
Input Sandboxes
Output handling
Users Support

3 Summary

Workload Management: the CMS way Problems and lessons learned Summary

Outline

1 Workload Management: the CMS way
General Architecture
Present
Future

2 Problems and lessons learned
CMS SW deployment
Job clustering
Data discovery and Location
Access to Local Data
Input Sandboxes
Output handling
Users Support

3 Summary

Workload Management: the CMS way Problems and lessons learned Summary

Outline

1 Workload Management: the CMS way
General Architecture
Present
Future

2 Problems and lessons learned
CMS SW deployment
Job clustering
Data discovery and Location
Access to Local Data
Input Sandboxes
Output handling
Users Support

3 Summary

Workload Management: the CMS way Problems and lessons learned Summary

General Architecture

Workload Management in CMS.

Baseline solution for CMS

Use (sometime abuse) only a fraction of Grid (LCG2)
functionalities

Does not even try to solve the general problem but focus
on specific use case, the most common for CMS user

Access to distributed data with batch jobs using CMS
application

Actual architecture based on following assumption:

Data is already located on remote sites

Local Pool catalogs available in remote sites

CMS wm deployed and available on remote sites

Workload Management: the CMS way Problems and lessons learned Summary

General Architecture

Simplify a lot Data Management!

Data distributed on Dataset basis

Dataset is atomic: complete and unbreakable

Each dataset has different data tiers: Hit, Digis, DST, . . .

Each considered independently

User input data is a dataset with given data tier(s)

Data discovery and location based on CMS specific
services: RefDB and PubDB

RefDB: central database knows of all produced datasets

PubDB: remote database (one per site publishing data)
contains local information about dataset access, including
CE and local file catalog location

RefDB knows about PubDB(s) publishing given dataset

Workload Management: the CMS way Problems and lessons learned Summary

General Architecture

CRAB CMS Remote Analysis Builder.

CMS specific tool for Workload Management

Perform all needed task to actual run user code on Grid
environment

User friendly interface for CMS user to grid services

User is supposed to be able to develop and run her
analysis code interactively

Gives directive to CRAB via configuration files:

Dataset/Owner she want to access

Type of data–tiers she needs (DST, Digis, . . .)

Job splitting directives (# event per jobs)

Name of Executable

Configuration .orcarc cards: the one she uses locally!

Workload Management: the CMS way Problems and lessons learned Summary

General Architecture

CRAB CMS Remote Analysis Builder.

CRAB functionalities
User job preparation: pack user private libraries and
executable, prepare jdls, wrappers, etc . . .

Dataset discovery and location

Job splitting

Changes of ORCA configuration files to run on remote site
(including catalogs, splitting, etc . . .)

Job submission, tracking

Simple monitoring

Automatic output retrieval at the end

Or save it to SE or gsiftp server (e.g. castor !)

Grid details are hidden to user

Workload Management: the CMS way Problems and lessons learned Summary

General Architecture

CRAB Status.

Early stage of development (version 0 0 11)
Actively developed to cope with (many) user requirements
Actively used by many CMS end users O(10′s), with little
or no Grid knowledge
Already several physics presentation based on data
accessed via CRAB
Successfully used to access from any UI data at Tiers-1
(and some T2)

CNAF (Italy)
PIC (Spain)
CERN
FNAL (US)
FZK (Germany)
IN2P3 (France)
RAL (UK): still working
Tiers-2: Legnaro, Bari, Perugia (Italy)

Estimated grand total O(107) events

Workload Management: the CMS way Problems and lessons learned Summary

General Architecture

Workflow

UI

RB

CE

jdl, job

jdl, job
Output

Output

SEDataWN

Data Location Service

S
u

b
m

is
si

o
n

 T
o

o
l

LocalFileCatalog

User develops code on local UI
Use CRAB for Grid submission

Input is Data to be accessed, code
Job preparation (private code,
splitting, submission, . . .)
Create wrapper job to be
submitted to Grid

RB (or tool) uses Data Location
Service to find good Site

Job arrives to Working Node and
runs against local Data using a local
FileCatalog

Output is retrieved or stored on
Storage Element

Workload Management: the CMS way Problems and lessons learned Summary

Present

UI

RB

CE

jdl, job

jdl, job
Output

Output

DataWN

S
u

b
m

is
si

o
n

 T
o

o
l RefDB

PubDB

PubDB
PubDB

CNAF

LNL

PIC

Dataset Discovery

Dataset Discovery (2)

SE

Site and File Catalog URL

File
Catalog

Knows

Dataset Discovery: RefDB (CERN) and
PubDB (one per site)

RefDB knows which PubDBs publishing
data

Each PubDBs publish site (CE)

Local PubDBs knows about Dataset
details (# events, ...) and URL of local
FileCatalog(s)

Submission tool query RefDB & eligible
PubDBs

find Dataset location (CE) and tell the RB
(as requirement)

RB ship job to CE

From WN, LocalFileCatalog (xml or mysql)
knows file location (used by COBRA)

Workload Management: the CMS way Problems and lessons learned Summary

Future

Data Location and Access: a proposal

UI

RB

CE

jdl, job
Output

Output

DataWN

S
u

b
m

is
si

o
n

 T
o

o
l

SE

KEY

keyjdl, job,

KEY

SEs

CMS MetaDataCatalog

Dataset Discovery

GRID data catalog

Dataset Location

File Location

GRID file catalog

CMS query

Dataset Bookkeeping Service (CMS)
higher level, interface to physicist
provide query mechanism
output is a “key(s)”, uniquely associated
with Data chunk(s)
Data Chunk is an unbreakable unit
(Atom). the granularity is defined by CMS
(today is Dataset . . .)

Grid Data Location Catalog
Given key identifying DataChunk⇒ list of
SE(s)⇒ RB get CE(s)
Use only abstract Data, not files!

Grid local file catalog
Available at local sites
Files location for CMS framework and
DataManagement system

Workload Management: the CMS way Problems and lessons learned Summary

Outline

1 Workload Management: the CMS way
General Architecture
Present
Future

2 Problems and lessons learned
CMS SW deployment
Job clustering
Data discovery and Location
Access to Local Data
Input Sandboxes
Output handling
Users Support

3 Summary

Workload Management: the CMS way Problems and lessons learned Summary

CMS SW deployment

CMS SW deployment.

User job runs against pre-installed CMS software
CMS system to deploy release sw, rpm based, not root
privileges needed
Run installation with ad-hoc job run by cms
SoftwareManager Grid user
Has special privileges to write in shared area on CE
Many problems with CE specific configuration (mainly afs)
What of site (eg CERN) has already all sw installed? Need
to made ad-hoc solution
No automatic mechanism to deploy releases as soon as
they are available
SW tag (VO CMS ORCA X Y Z) published by CE
Match done by RB based on user requirement: if failed job
Aborted but submission fine: need to check job status until
Scheduled

Workload Management: the CMS way Problems and lessons learned Summary

Job clustering

Job clustering.

Typical User job is splitted into several subjobs each
accessing a fraction of total input data
Subjobs are identical but for few bits
Same Input Sandbox, same requirements, etc. . .
Eventual common pre-job:

Stage-in (pinning) of input data from MSS
User sw compilation and linking

Need job cluster (or bulk) seen as a single entity
Allow bulk operations (submission, query, status, cancel,
. . .)
Also possible to get access to single sub jobs
SubJob number available at WN level, used by job wrapper
Several splitting logic possible

first iteration done at UI level
then at RB level, using Grid data location

Workload Management: the CMS way Problems and lessons learned Summary

Data discovery and Location

Data Discovery and Location.

Today completely done by CMS specific tools and services

Data discovery is (and will remain) CMS specific

Data location is not

CMS choice is to avoid file-based data discovery

User (and user application) does not access single files,
but data chunks

User does not need to know which are the files she will
access from WN

Need to know about files only at WN level, not before!

CMS want to decouple data discovery from File access

Data catalog is not file catalog.

Workload Management: the CMS way Problems and lessons learned Summary

Access to Local Data

Access to Local Data.

Local Pool Catalog
Created by Production tools or by PhedEx
Supported xml (one per dataset/data tier), mysql
Maintenance by local site administrator

Access to local files
From WN access to local data guaranteed by local site
admin
Any Pool/Root compliant protocol is fine
Actual protocol defined inside local Pool Catalog
Used Posix (NFS), RFIO, dCache
Some problem with RFIO authentication: grid user and
group copied into disk server /etc/passwd
Copy to WN working area of needed files not an option!

Both should be provided by grid

Workload Management: the CMS way Problems and lessons learned Summary

Input Sandboxes

Input sandboxes.

Today sent via input sandbox:
Configuration files,
Job ancillary files,
User libraries and executable

Size limit on InputSandBox O(10) MB
Use SE for big input stuff: many problems.

Which SE?
Close to UI (not necessarily defined)
Close to CE, not known in advance
Must be sure to avoid name clashing (using what user want
not some relic from past jobs)
Must cleanup everything at the end: when? data lifetime?
Should foresee a experiment specific service?

Workload Management: the CMS way Problems and lessons learned Summary

Output handling

Output produced.

User wants output on her computer or on a storage
accessible from her computer (via posix or any usable
protocol, eg RFIO)
In general not interesting to have output on Grid
Different for “production” use cases
If output via output sandbox: user must ask when Done
Query L&B every x seconds until job is Done scalability??
Can user be notified when job is finished?
If storage has the proper server installed (e.g. gsiftp)
possible to just copy the output when done.
What about ACL? Output written according proxy
certificate ACL, which are different from storage ones
cms002 need to write on
/castor/cern.ch/user/s/slacapra/...

Workload Management: the CMS way Problems and lessons learned Summary

Users Support

User Support.

Critical issue!

Analysis is performed by generic users, with little or no
specific knowledge about grid

User does not want to became an expert also on Grid:
there are already so many things she need to know to do
analysis, too much!

CMS specific support

Grid support: how?

GGUS, EIS, ROC ... which is the correct entry point?

Should we have a CMS–oriented Grid support? (yes)

Support on sites: Grid or(/and) CMS specific?

Workload Management: the CMS way Problems and lessons learned Summary

Outline

1 Workload Management: the CMS way
General Architecture
Present
Future

2 Problems and lessons learned
CMS SW deployment
Job clustering
Data discovery and Location
Access to Local Data
Input Sandboxes
Output handling
Users Support

3 Summary

Workload Management: the CMS way Problems and lessons learned Summary

Summary

CMS first working prototype for Distributed User Analysis is
available and used by real users

Proposal for catalog/data discovery/data location
presented

Pragmatic approach: many lesson learned, lot of feedback
provided to Grid team

	Workload Management: the CMS way
	General Architecture
	Present
	Future

	Problems and lessons learned
	CMS SW deployment
	Job clustering
	Data discovery and Location
	Access to Local Data
	Input Sandboxes
	Output handling
	Users Support

	Summary

