
LHCb status and plans for
distributed analysis

 7 March 2005

Imperial College
London

Page 2Imperial College LondonUlrik Egede 7 March 2005

What is analysis in LHCb?

The aim of LHCb is to extract results on CP violation from rare B-
meson decays.

Detector will see the full event rate of 40 MHz from LHC collisions.

When data leaves the detector the rate will be around 2 kHz (200 Hz
physics, 1800 Hz systematics and calibration).

Output data in DST format will be divided into streams each containing
maybe 107 events per year.

These are the events that the end user will access for analysis.

Size for DST that user will see is about 100 kB per event (for data).

For analysis we also need access to:
 Simulated data for signal samples and inclusive events.

2 times larger size.

Systematic data sample
Will be stripped 4 times a year.

Page 3Imperial College LondonUlrik Egede 7 March 2005

LHCb computing model with 2 kHz HLT rate

Page 4Imperial College LondonUlrik Egede 7 March 2005

Use of Tier centres

CERN:
Reconstruction of B sample, analysis, stripping.

Tier 1:
Reconstruction, stripping and analysis.

Tier 2:
Mainly MC production.

Usage in MSI2k years for 2008.

Page 5Imperial College LondonUlrik Egede 7 March 2005

The Ganga project

The purpose of Ganga is to work as a wizard for LHCb users running
Gaudi applications.

Mainly we have running C++ analysis applications (DaVinci) in mind.

We need to support the following behaviour:
writing new Gaudi algorithms, either in C++ or Python;

modifying existing algorithms;

modifying job options of existing/new algorithms.

Data will now (and in the future?) be distributed mainly at Tier 1
centres but we should support Tier 2 and local data as well.

The input data will be data in POOL format.

Output from distributed analysis will be a combination of data in POOL
format, ROOT/HBOOK files and stdout/stderr.

Page 6Imperial College LondonUlrik Egede 7 March 2005

A quick reminder of Ganga

The user can monitor
jobs in the states:

New

Configured

Submitted

Running

Completed

Error – if reported!

Jobs are preserved
between invocations.

Status updated at
regular intervals.

Jobs in Ganga move between different states.
This gives the bookkeeping

Page 7Imperial College LondonUlrik Egede 7 March 2005

CLIP - Command Line Interface in Python

A GUI is good for providing overview and for new users to learn about
distributed analysis.

Many advanced users would like to write scripts that perform repeated
operations.

Solution is to have a python based CLI that interoperates with the GUI.
A syntax has been defined and interfaced with the existing framework.

Many additional benefits
Will allow test jobs to be defined and run in new releases in an automatic

way.

Will allow prototyping of new plugins for applications or submission systems
to be tested without initially worrying about GUI.

Will allow automatic tests of new LHCb releases to be defined.

Will illustrate the cycle of an LHCb analysis in terms of CLIP.

Page 8Imperial College LondonUlrik Egede 7 March 2005

Ganga releases

Current release is Ganga 3.0
Since last public release in October, many new features.

CLIP.

More features for LHCb application handler.

Update of Dirac submission handler.

Implementation of ATLAS Athena application handler.

Support of binary dependencies on SLC3.

Documentation completely updated.

This will be last major release in current framework.
Bug fixes and minor enhancements will be made.

Ganga 4
Now focus is on refactored framework.

Andrew to talk about this.

Page 9Imperial College LondonUlrik Egede 7 March 2005

Trivial example of using CLIP

Create a job:

List jobs:

dv = DaVinci()
dv.optionsfile='myoptions.opts'
create a new job
j = Job(name='myjob', application=dv)
print 'created job ',j.id
j.submit()

>>> print jobs
Statistics: 11 jobs jobs

 ID status name
1 completed Hello World
2 completed Copy of LSF
3 completed LSF
4 completed CMTUSER
5 completed Root
6 completed Loop1

Page 10Imperial College LondonUlrik Egede 7 March 2005

A user view of an analysis – create algorithm

An analysis will define a work flow of algorithms to run.
The algorithms will be written mainly in C++ and run inside the Gaudi
framework.

Possibility to write algorithms in Python as well but no widespread use (yet)

Code for analysis will be a mixture of
Standard LHCb algorithms

Under version control

User modified standard algorithms
This is typically for development of the standard tools

User specific algorithms
These might be different from job to job.

No version control.

User supply of DLLs present major difference to production jobs.

Page 11Imperial College LondonUlrik Egede 7 March 2005

A user view of an analysis – configure job

LHCb jobs are configured through a set of options files.
These files have no state and can be pre-processed in a static way.

This is an important point for distributed analysis model.

For analysis these options might be different from one job to the next.

Example:
ApplicationMgr.TopAlg += { "PreLoadParticles" };

// Set to use the CombinedParticleMaker
PreLoadParticles.PhysDesktop.ParticleMakerType =
"CombinedParticleMaker";

// Default values for particle types to be made
// Note that when exclusive mode is selected the selection is
done in
// the order set below
PreLoadParticles.PhysDesktop.CombinedParticleMaker.Particles =
{"kaon", "pion" };

Page 12Imperial College LondonUlrik Egede 7 March 2005

Create an analysis job

CLIP code:

define DaVinci application
dv = DaVinci()

tell we use a non-default location of code
dv.cmt_user_path='/afs/cern.ch/user/u/uegede/cmttest'

take options file from user area
dv.optionsfile=dv.cmt_user_path + \
 '/Phys/FlavourTagging/v5r4/options/DVBTagging.opts'

create a job
j = Job(application=dv)

Page 13Imperial College LondonUlrik Egede 7 March 2005

A user view of an analysis – test and run algorithm

For testing and running analysis the average physicist will always do
what seems the easiest way to get a result tomorrow!

Interaction with complicated systems that might bring long term time
savings never gain wide acceptance.

CLIP code: # create a new job that go to batch
j = Job(application=dv, backend='LSF')

change queue and submit
j.queue='1nh'
j.submit()

make copy and send to Dirac
j2 = j.copy()
j2.backend='Dirac'
j2.submit()

from user point of view jobs are treated in the same way
print j,j2

Page 14Imperial College LondonUlrik Egede 7 March 2005

A user view of an analysis – test and run algorithm

For running larger scale jobs the incentive will always be to use what
worked yesterday.

For larger scale analysis jobs this means the LSF batch system at CERN.

To change the behaviour to be for GRID jobs we can.
Make it easier to use than LSF

Tough, but our aim should be that it at least is not harder.

Limit the available CPU and data resources at CERN.
Seems to happen at the moment by default...

Ganga, as in example on last page, try to make all types of running
equivalent.

Page 15Imperial College LondonUlrik Egede 7 March 2005

A user view of an analysis – define dataset

Dataset for analysis needs specification.

Selection can happen in many ways
Fixed list taken from static web page.

Selection in a database
“The B to DsK background calibration set”.

“Same data as I used yesterday”.

Specific event
Event 2134539 from run 3473.

“My usual test data”

Notice that none of these cases contain anything about LFN, PFN or
other file specific information.

We want to introduce the concept of a saved dataset in Ganga
This should cover all the above use cases.

Only for Ganga-4.

Page 16Imperial College LondonUlrik Egede 7 March 2005

Interaction with LHCb bookkeeping database

This will allows user to pick the data for analysis directly from within
Ganga.

Not clear how if we need a CLI for finding datasets.

Page 17Imperial College LondonUlrik Egede 7 March 2005

A user view of an analysis – keeping track

For production of simulated events we know the importance of very
good bookkeeping.

In an analysis situation users love it if it comes for free.
The default way of working is to sort out in retrospect which jobs failed,
which produced corrupt output etc.

p = re.compile('^DsKanalysis.*')
n = m = 0

for j in jobs:
 if p.match(j.name):
 m = m+1
 if j.status()=='completed': m = m+1

print n, '/', m, 'jobs completed so far.'

Page 18Imperial College LondonUlrik Egede 7 March 2005

A user view of an analysis – merging

The last stage of an analysis is to pull all the results together.

Merge all histogram files.

Chain ROOT output files.

Normalise to analysed
luminosity.

Search stdout for specific
patterns.

Not nice but seen a lot.

 #Extract number of accepted events from stdout of
 # jobs 'Loop1' – 'Loop7'
 jobname='Loop'
 p = re.compile('^'+jobname+'.*')
 accept = re.compile('.*of events (processed|accepted).*')
 files=[]
 for j in jobs:
 if p.match(j.name):
 if j.status == 'completed':
 fname = j.directory+'/output/std.out'
 outfile = file(fname)
 files.append(fname)
 for l in outfile.readlines():
 if accept.match(l): print l
 outfile.close()

Page 19Imperial College LondonUlrik Egede 7 March 2005

Testing merging with Root

As all in Python we can use pyRoot to merge and analyse ROOT
output.

Proof of concept made.

 # Interoperation between Ganga and ROOT
 from ROOT import gROOT,TFile,TH1

 for j in jobs:
 if j.status == 'completed':
 f = TFile(j.directory+'/output/test.root')
 h=f.FindObjectAny('2')
 h.Draw()
 raw_input("Press Enter To Continue: ")
 break

Page 20Imperial College LondonUlrik Egede 7 March 2005

User requirements for distributed analysis system

For all users:
Responsive

Robust

Reliable

In addition for new users
Intuitive.

Clear error reporting.

Transparent to changes in middleware.

For more powerful users
Ability to deal with Event data collections.

Scripting language for job control.

Page 21Imperial College LondonUlrik Egede 7 March 2005

LHCb requirements

Ability to set priorities
Within LHCb we need the ability to control how resources allocated to
LHCb are used.

Accounting
From our current production we have seen the efficiency of monitoring to
track down errors and wrong configurations in hardware/LCG/jobs.

Monitoring at the job level required of:
CPU usage

Memory usage

Data requests

Efficiency

Users

Page 22Imperial College LondonUlrik Egede 7 March 2005

Getting the analysis job to the Grid

Our aim is to get LHCb analysis to run on LCG resources.

Our adopted solution is to use infrastructure of production system
(DIRAC) as an intermediate step.

We get most monitoring for free.

Only trivial DIRAC UI to install (one click).

We can use the experience of running production jobs on LCG.

We get access to all kind of sites (so not only LCG) running Dirac agents.

Page 23Imperial College LondonUlrik Egede 7 March 2005

Not only simple use cases

Several personal development areas supported.

Release area can be changed on a job-by-job basis as well.

Some ideas on setting up automatic tests of new LHCb general s/w
releases.

Create a set of standard jobs.

Monitor execution time and memory usage.

Analyse output.

Page 24Imperial College LondonUlrik Egede 7 March 2005

Developing new ideas

How to get towards a merging capability
Write use cases

Pre job merging
A user defines before a job is running how the output data from the sub jobs

should be merged. When all parts of the job have finished the ones that
terminated successfully have their output merged without any user interaction.

Post job merging
After the jobs have finished the user selects a merging strategy from a predefined

list. All successfully finished parts of a job are included in the merging.

Get part of use case working
You saw example earlier on merging stdout.

Abstract behaviour to get syntax and API.

Review pseudo code

Test out new module

Page 25Imperial College LondonUlrik Egede 7 March 2005

Status of analysis part of Data Challenge '04

Aim is to demonstrate that any physicist within LHCb can run an
analysis on distributed resources.

Required steps:
Develop GAUDI algorithm for data analysis:

Debug and test on small dataset on local disk.
Working and demonstrated.

Define dataset to analyse:
Selection through bookkeeping system.

Working and demonstrated.

Divide dataset into bits that fit individual analysis jobs.
Not yet automatic but not a show stopper.

Page 26Imperial College LondonUlrik Egede 7 March 2005

Status of analysis part of Data Challenge '04

Requires steps (cont):
Submit analysis

No specific knowledge of data location required.
Working; is part of data selection.

No need to specify location where job will run.

Implemented but not tested in anger.

Retrieve results
Get the output from jobs back to a single point

Working and tested.

 Merge output data.
Not yet automatic. Not a big issue.

So what is the status of putting it all together?
Unfortunately much behind original schedule and not started yet.

Insufficient manpower main reason

Page 27Imperial College LondonUlrik Egede 7 March 2005

Status of GANGA for LHCb analysis from Oct '04
Submission Local Working

LSF Working
DIRAC Working
LCG proxy transfer In Progress

Job Options Selection Working
Editing Working
Expansion Working
Logical view Deferred

Job handlers Generic Working
DaVinci Working
User defined templates In Progress (new)

Data selection Connection to bookkeeping database Working
Creation of XML slice Working (new)

Installation AFS Working
Local Working

Job management Splitting of input data In Progress
Merging of output In Progress (new)

Roaming Job profile Deferred
Options and DLL packaging Working (new)

CLIP Integration with GANGA core Working (new)

Page 28Imperial College LondonUlrik Egede 7 March 2005

Conclusion

New Ganga-3 release made
Supports features required for proof of concept for LHCb distributed
analysis.

First implementation of scripting through CLIP.

Many new LHCb use cases supported.

Last release in old framework.

Well on the way for refactored release
Very dynamic way of working at the moment.

Expect to have a version with same functionality as Ganga-3 by mid April.

