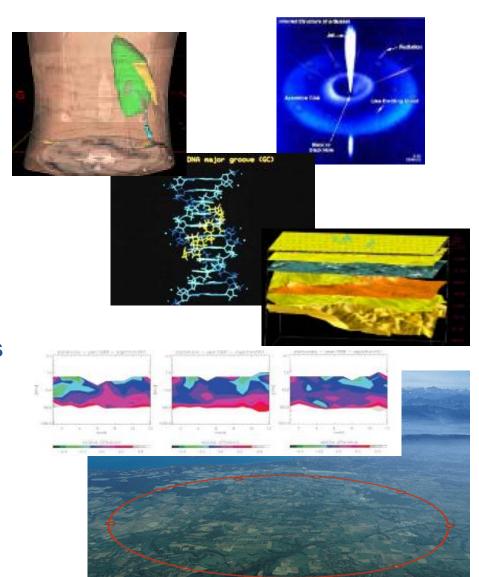
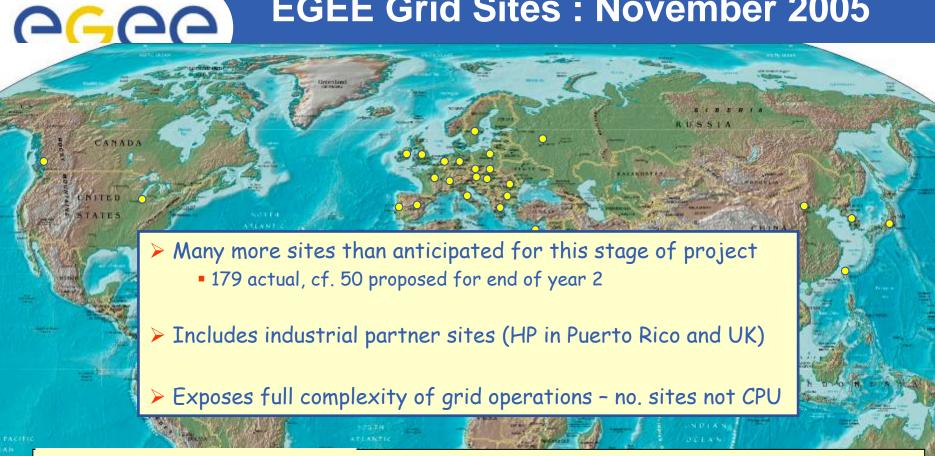


SA1: Grid Operations and Management

Ian Bird, CERN
SA1 Activity Manager
EGEE 2nd EU Review
6-7/12/2005

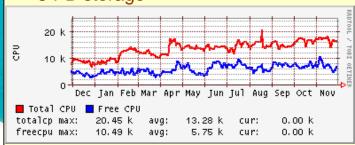
www.eu-egee.org





Outline

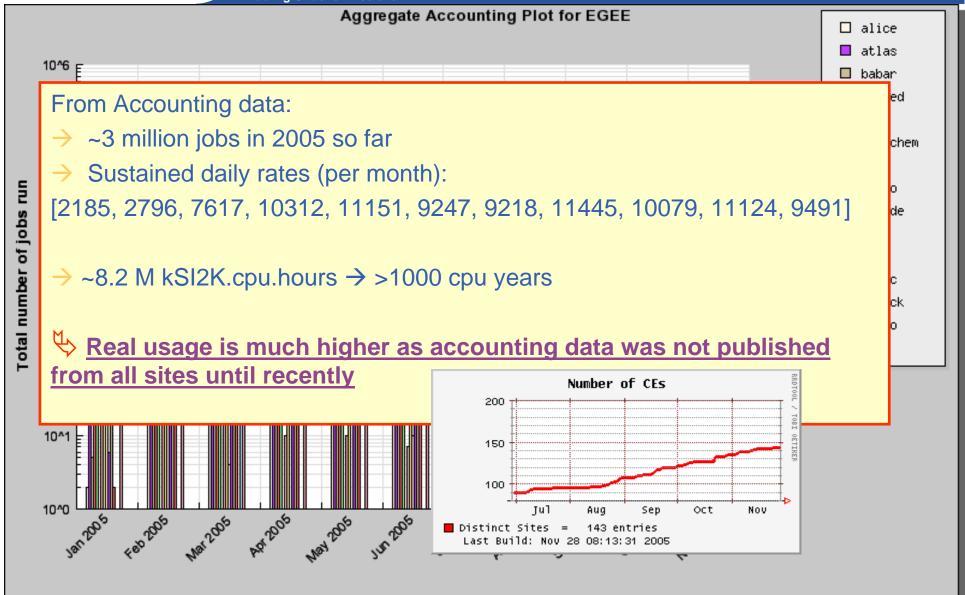
- Scale and usage of infrastructure
- Grid Operations
 - Metrics, operations support
- Pre-production Service
- User support
- Operational security
- Interoperability / interoperation
 - Input to standards process
- Certification and deployment process
- gLite certification
 - LCG-2/gLite convergence
- Key points for SA1
- Plans for next period


EGEE Grid Sites: November 2005

EGEE:

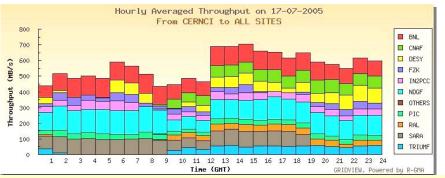
179 sites, 39 countries >17,000 processors,

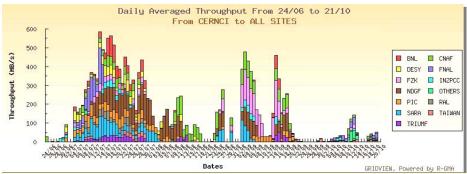
~5 PB storage



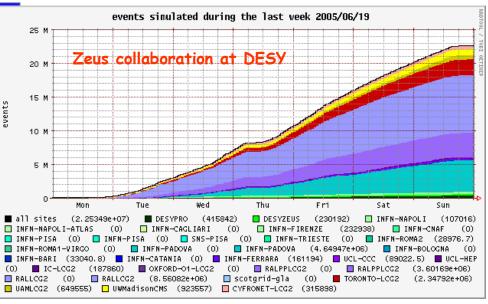
country	sites	country	sites	country	sites
Austria	2	India	2	Russia	12
Belgium	3	Israel	3	Singapore	1
Bulgaria	4	Italy	25	Slovakia	4
Canada	7	Japan	1	Slovenia	1
China	3	Korea	1	Spain	13
Croatia	1	Netherlands	3	Sweden	4
Cyprus	1	Macedonia	1	Switzerland	2
Czech Republic	2	Pakistan	2	Taiwan	4
Denmark	1	Poland	5	Turkov	4
France	8	Polariu	5	Turkey	ı
Germany	10	Portugal	1	UK &Ireland	37
Greece	6	Puerto Rico	1	USA	4
Hungary	1	Romania	1	Yugoslavia	1

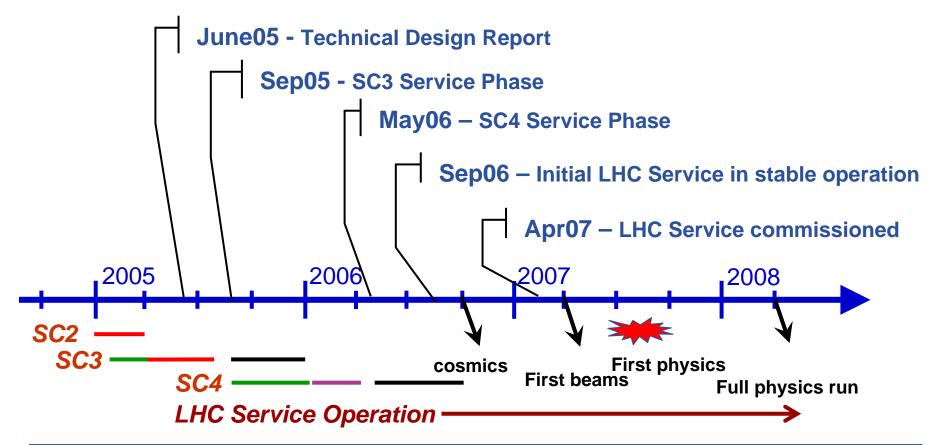
10,000 jobs /day

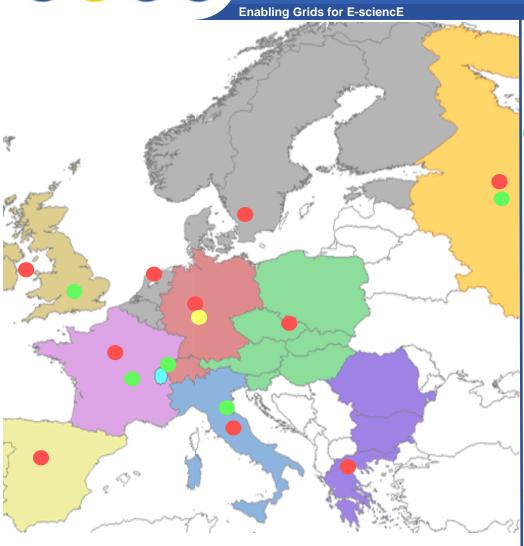

Enabling Grids for E-sciencE



Some example uses


Enabling Grids for E-sciencE


LCG sustained data transfers using FTS; in excess of 500 MB/s


LCG Service Challenges – ramp up to start-up service

- SC2 Reliable data transfer (disk-network-disk) 5 Tier-1s, aggregate 500 MB/sec sustained at CERN
- SC3 Reliable base service most Tier-1s, some Tier-2s basic experiment software chain grid data throughput 500 MB/sec, including mass storage (~25% of the nominal final throughput for the proton period)
- SC4 All Tier-1s, major Tier-2s capable of supporting full experiment software chain inc. analysis sustain nominal final grid data throughput
- **LHC Service in Operation** September 2006 ramp up to full operational capacity by April 2007 capable of handling twice the nominal data throughput

SA1 – Operations Structure

Operations Management Centre (OMC):

At CERN – coordination etc

Core Infrastructure Centres (CIC)

- Manage daily grid operations oversight, troubleshooting
- "Operator on Duty"
- Run essential infrastructure services
- Provide 2nd level support to ROCs
- UK/I, Fr, It, CERN, Russia, Taipei

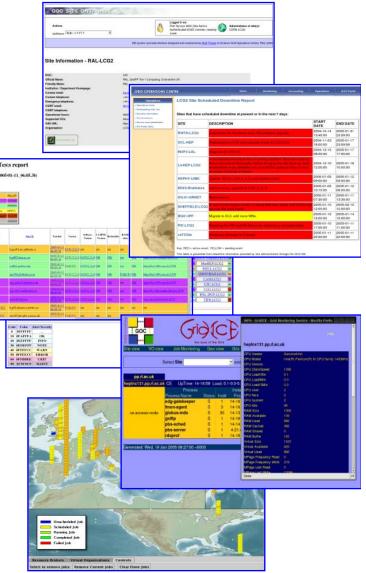
Regional Operations Centres (ROC)

- Front-line support for user and operations issues
- Provide local knowledge and adaptations
- One in each region many distributed

User Support Centre (GGUS)

- In FZK manage PTS provide single point of contact (service desk)
- Not foreseen as such in TA, but need is clear

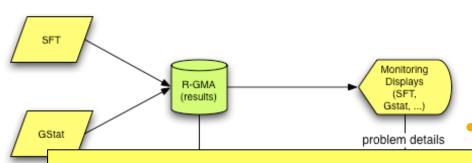
Operations

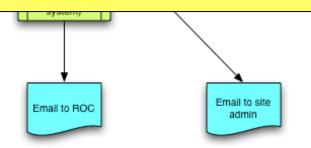

Operator on duty

- Started November 2004
- Crucial in stabilising sites
- Many complementary monitoring tools

 Essential tools : GIIS monitor and Site Functional Tests

Simplified VO selection of good sites


- VO can select set of functional tests that it requires
- Can white- or black-list sites
- Can include VO-specific tests (e.g. sw environment)
- SFT framework provides dynamic selection of "good" sites
- SFT's have evolved to become stricter as lessons are learned
- Normally >80% of sites pass SFTs
 - NB of 180 sites, some are not well managed



Operations coordination

- Weekly operations meetings
- Regular ROC, CIC managers meetings
- Series of EGEE Operations Workshops
 - Nov 04, May 05, Sep 05
 - Last one was a joint workshop with Open Science Grid
- These have been extremely useful
 - Will continue in Phase II
 - Bring in related infrastructure projects coordination point
 - Continue to arrange joint workshops with OSG (and others?)

- CIC-on-duty: currently 6 teams (CERN, IN2P3, RAL, INFN, Russia, Taipei) working in weekly shifts
- The operators look at emerging
- Procedures described in detail in the Operations Manual
- Geographically distributed responsibility for operation: there is no "centre"; Tools are hosted at different sites:
 - GOC DB (UK), GStat (Taipei), SFT (CERN), CIC portal (Lyon)

- PROC is responsible for timely problem solution otherwise ticket is escalated
- Priorities and deadlines for tickets are set depending on site size (number of CPUs)

Main tool for CIC-on-duty

- Integrated view of monitoring tools (summary) shows only failures and assigned tickets
- Detailed site view with table of open tickets and links to monitoring results
- Single tool for ticket creation and notification emails with detailed problem categorisation and templates
- Ticket browser with highlighting expired tickets
- Well maintained adapts quickly to new requirements/suggestions

SFT - report

- Shows results matrix with all sites
- Detailed test log available

is kept

for troubles Very important in stabilising sites: debugging

History of in

- Selection of "critical" tests for each VO to define which sites are good/bad
- Freedom of Choice" tool:
 - Allows apps to select good sites according to their criteria

Colours definition Test summary

Apps use only good sites

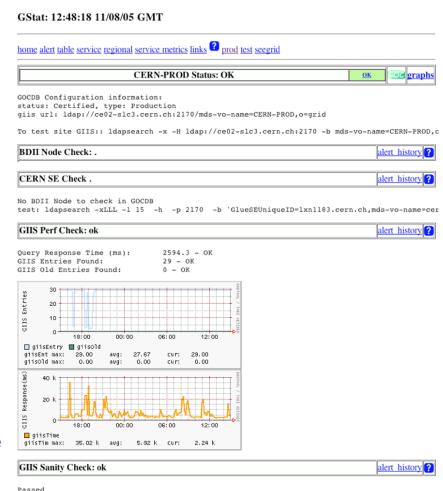
Bad sites are automatically excluded

wn SD Scheduled downtime #a3a3a3 ca Job list match failed #aab3ff crl Job submission failed #f4876b rm Critical tests failed #f9d48e

csh CSH test swdir VO software directory rgma R-GMA dirac-test Dirac full test Software Version (WN) WN host name CA certs version CRL timestamp test Replica Management VO Tag management Job submission BrokerInfo

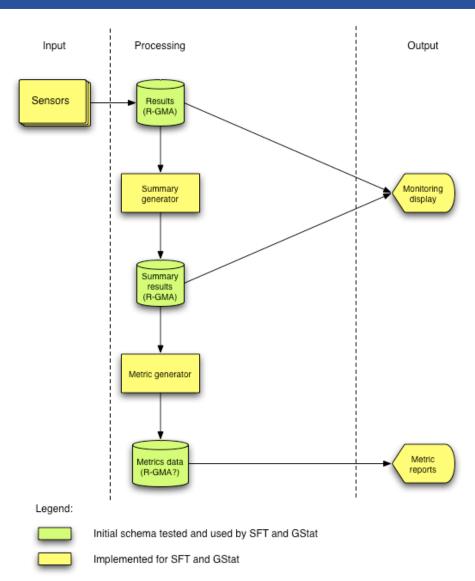
VO lhcb

Test abbreviations


Sites work hard to fix problems							X	<u>0</u>	<u>O</u>	<u>!!!!</u>	JL	<u>X</u>	??					
01105 W011		IGI	u 10 11x	Problems								<u>O</u>	<u>O</u>	<u>O</u>	!!!	<u>JL</u>	X	??
101 4 4	3.	<u>OK</u>	TOKYO-LCG2	dgce0.icepp.jp	<u>OK</u>	<u>O</u>	2 4 0	I	<u>o</u> !	<u>O</u>	00	<u>O</u>	<u>O</u>	<u>O</u>	<u>!!!!</u>	<u>JL</u>	<u>X</u>	??
al" tests	4.	<u>OK</u>	Taiwan-LCG2	lcg00125.grid.sinica.edu.tw	<u>OK</u>	<u>O</u>	<u>2 6 0</u>	I	<u>o</u> !	<u>O</u>	<u>0</u> 0	<u>O</u>	<u>O</u>	<u>O</u>	<u>!!!</u>	<u>JL</u>	<u>X</u>	??
fine	5.	<u>ok</u>	<u>Taiwan-IPAS-</u> <u>LCG2</u>	testbed001.phys.sinica.edu.tw	<u>ok</u>	<u>o</u>	<u>2 6 0</u>	I	0	0	0 0	<u>O</u>	<u>O</u>	<u>O</u>	<u>!!!!</u>	JL	X	??
	6.	<u>OK</u>	GOG-Singapore	melon.ngpp.ngp.org.sg	<u>OK</u>	<u>0</u>	<u>2 6 0</u>	I	<u>o</u> !	<u>0</u>	<u>0</u> 0	<u>O</u>	<u>O</u>	<u>O</u>	!!!	<u>JL</u>	<u>X</u>	??
ood/bad	7.	<u>ok</u>	Taiwan-NCUCC- LCG2	ce.cc.ncu.edu.tw	<u>ok</u>	<u>o</u>	2 6 0	I	0	0	0 0	0	<u>O</u>	<u>O</u>	!!!	<u>ok</u>	<u>o</u>	<u>0</u>
	8.	<u>OK</u>	LCG KNU	cluster50.knu.ac.kr	<u>OK</u>	<u>O</u>	<u>2 5 0</u>	Ι	<u>o</u> !	<u>O</u>	0 0	<u>O</u>	<u>O</u>	<u>O</u>	!!!!	<u>CT</u>	<u>O</u>	<u>!!!</u>
ce" tool:	BNL																	
select	9.	<u>SD</u>	BNL-LCG2	lcg-ce01.usatlas.bnl.gov	<u>SD</u>	X	??	??	?	??	? ??	??	??	??	??	<u>SD</u>	X	??
N I	Canada																	
g to their	10.	JL	TORONTO-LCG2	bigmac-lcg- ce.physics.utoronto.ca	JL	X	260	Ι	0	0	0 0	<u>o</u>	w	<u>O</u>	!!!	<u>ok</u>	<u>o</u>	<u>O</u>
	11.		CARLETONU- LCG2	lcg02.physics.carleton.ca	<u>SD</u>	X	??	??	?	??	? ??	??	??	??	??	<u>SD</u>	X	??
	12.	<u>0K</u>	TRIUMF-LCG2	lcgce01.triumf.ca	<u>0K</u>	<u>0</u>	<u>2 6 0</u>	Ι	<u>o</u> !	0	00	<u>O</u>	<u>O</u>	<u>O</u>	<u>O</u>	<u>0K</u>	<u>O</u>	<u>O</u>
	13.	<u>OK</u>	Umontreal-LCG2	lcg-ce.lps.umontreal.ca	<u>OK</u>	<u>O</u>	260	Ι	<u>o</u> !	0	00	<u>O</u>	<u>W</u>	<u>O</u>	!!!	<u>OK</u>	<u>O</u>	<u>O</u>
_																		

GIIS Monitor (GStat)

Monitoring tool for Information System:


- Periodically queries all Site BDIIs (but not Top-level BDIIs)
- Checks if Site BDIIs are available
- Checks integrity of published information
- Checks for missing entities, attributes
- Detects and reports information about some of the Services: RB, MyProxy, LFC but doesn't monitor them
- Detects duplicated services in some cases (eg. 2 global LFC servers a single VO)

Site availability metric

- Using current data schema and R-GMA - integrate monitoring information from SFT and GStat
- Summary generator uses list of critical tests to generate a summary per site - binary value (good/bad) generated every 1h
- Metric generator integrates the summaries over time period (1 day...) to generate availability metric

Evolution of SFT metric

Service measurement – extending the metrics

Enabling Grids for E-sciencE

Service	Class	Comment
SRM 2.1	С	Monitoring of SE
LFC	C/H	
FTS	С	Base on SC experience
CE	С	Monitored by SFT now
RB	С	Job monitor exists
Top level BDII	С	Can be included in Gstat
Site BDII	Н	Monitored by Gstat
MyProxy	С	
VOMS	Н	
R-GMA	НЕ	ffort identified for each ser

Will all be integrated into SFT framework

First approach to SLA:

• each Class (C, H, etc) defines required service availability

Checklist for a new service

Enabling Grids for E-sciencE

- User support procedures (GGUS)
 - Troubleshooting guides + FAQs
 - User guides
- Operations Team Training
 - Site admins
 - CIC personnel
 - GGUS personnel

- First level support procedures
 - How to start/stop/restart service
 - How to check it's up
 - Which logs are useful to send to CIC/Developers
 - and where they are
- Mon > What is now understood as essential to make a reliable
 - production service from a middleware component
- Not much middleware comes with all this ...
- Service rarameters
 - Scope Global/Local/Regional
 - SLAs

Accd

- Impact of service outage
- Security implications
- Contact Info
 - Developers
 - Support Contact
 - Escalation procedure to developers
- Interoperation
 - Documented issues

- **Tools for CIC to spot problems**
 - GIIS monitor validation rules (e.g. only one "global" component)
 - Definition of normal behaviour
 - Metrics
- CIC Dashboard
 - Alarms
- Deployment Info
 - RPM list
 - Configuration details (for yaim)
 - Security audit

Pre-production service

Enabling Grids for E-sciencE

- Current PPS is a "pure" gLite service
 - BDII, SRM SE and MyProxy server are also needed.
- The PPS is available and used by many VOs
 - HEP VOs (CMS, ATLAS, Alice, LHCb)
 - ARDA
 - BioMed
 - egeode
 - NA4 (testing)
 - DILIGENT
 - SWITCH
- Currently upgrading from gLite 1.4 to gLite 1.4.1 (a major patch)
 - As the service is now in use, upgrades are planned and phased to minimize the impact to users.
- Currently preparing to move the day-to-day operations of the PPS to the production operations team
 - SFT monitoring is now in place
 - All PPS sites are now correctly entered in the GOC DATABASE
 - Production operations processes are being implemented for the PPS (so far the CA upgrade process and scheduled downtime processes are in place).
- Planning is under way for moving the PPS from being a pure gLite service to being a true pre-production service which closely mirrors production (+ new and updated functionality and services)

PPS: Resources

Enabling Grids for E-sciencE

ROC	Site	CPUs	SE	Core Services					
Asia-Pacific	ASGC	?		WMS					
CE	CYFRONET	3							
CERN	CERN	54	DPM	WMS	FTS	VOMS (production)		
DE/CH	FZK	2							
France	IN2P3	?			FTS	VOMS			
Italy	CNAF	150	DPM	WMS		VOMS	BDII		
Italy	INFN-Padova	?							
NE	NIKHEF	0				VOMS			
SEE	UoM	2							
SEE	UPATRAS	3		WMS					
SWE	CESGA	2					R-GMA		
SWE	IFIC	1	Castor						
SWE	LIP	2	DPM				MyProxy		
SWE	PIC	180	Castor	WMS			FireMan		
UK/I	ScotGrid-Glasgow	0			FTS				

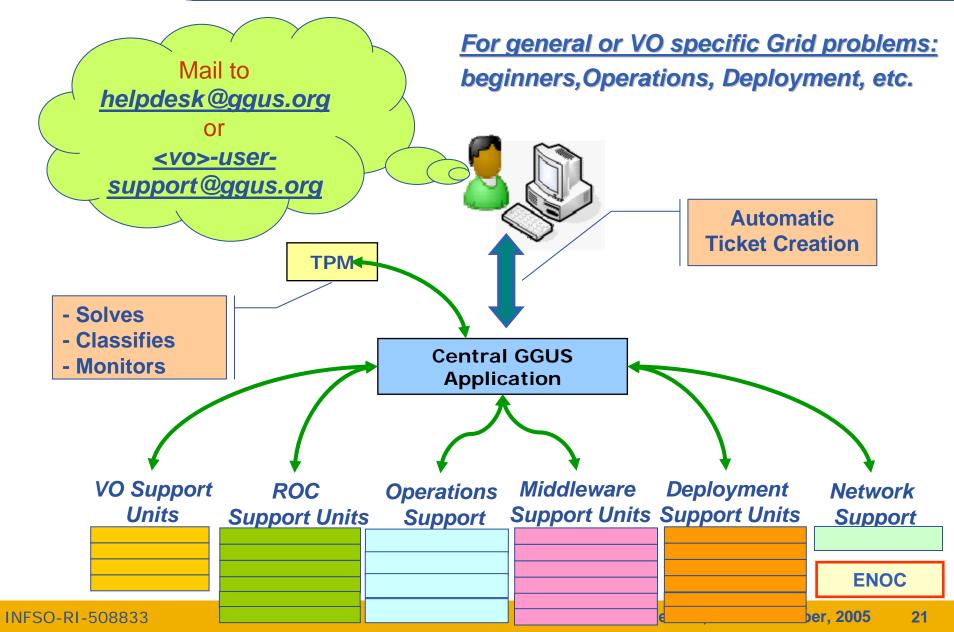
- PIC, CNAF and CERN have given access to production batch farms
 - PIC and CNAF running LCG WNs; CERN running gLite WNs.
 - Queue to production batch farm is currently restricted to 50 jobs. This restriction can be removed, increasing the number of CPUs at CERN to ~1,500.
- To date, over 1.5 million jobs have been submitted to the PPS WMSs.

User support

Enabling Grids for E-sciencE

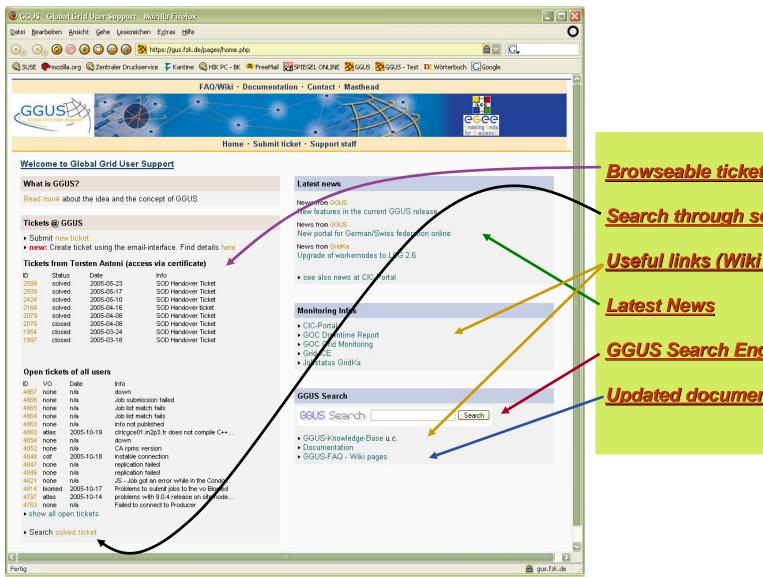
User Support in EGEE (helpdesk, call-centre)

- Regional support with central coordination (GGUS @ FZK)
- GGUS platform connects:
 - CICs, ROCs, VOs, service teams providing support
 - Middleware developers and support
 - Networking activities (training etc).
- TPM oversee problem lifecycle
 - Ensure problems assigned and followed up
 - Problem resolution by volunteer experts harness informal processes
- Users can report via local helpdesks, ROC helpdesk, VO helpdesk, or to GGUS
- Ticket traffic increasing
 - Now: Change in users from a few, experienced, production managers to general users (low quality of tickets)


VO support

- Other aspect of user support direct support to apps to integrate with grid middleware
- Application driven process: set up several task forces to implement this (follow successful model in LCG)

User Support – GGUS


Enabling Grids for E-sciencE

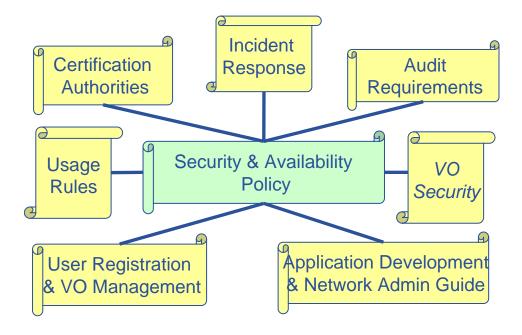
GGUS Portal: user services

Enabling Grids for E-sciencE

Browseable tickets

Search through solved tickets

Useful links (Wiki FAQ)


GGUS Search Engine

Updated documentation (Wiki FAQ)

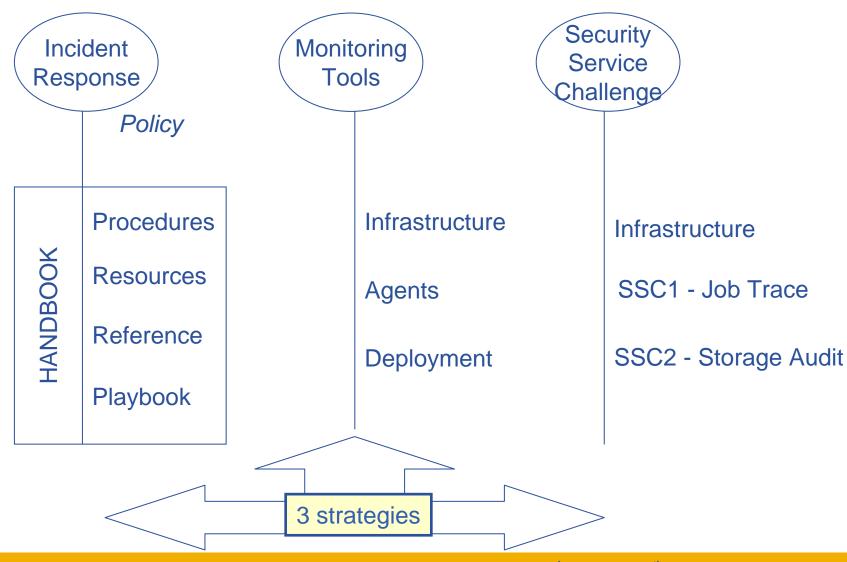
Security Policy

- Joint Security Policy Group
 - EGEE with strong input from OSG
 - Policy Set:

Policy Revision In Progress/Completed

- Grid Acceptable Use
 - https://edms.cern.ch/document/428036/
 - common, general and simple AUP
 - for all VO members using many Grid infrastructures
 - EGEE, OSG, SEE-GRID, DEISA, national Grids...
- VO Security
 - https://edms.cern.ch/document/573348/
 - responsibilities for VO managers and members
 - VO AUP to tie members to Grid AUP accepted at registration
- Incident Handling and Response
 - https://edms.cern.ch/document/428035/
 - defines basic communications paths
 - defines requirements (MUSTs) for IR
 - reporting
 - response
 - protection of data
 - analysis
 - not to replace or interfere with local response plans

Operational Security Coordination Team


Enabling Grids for E-sciencl

- OSCT membership → EGEE ROC security contacts
 - What it is not:
 - Not focused on middleware security architecture
 - Not focused on vulnerabilities (see Vulnerabilities Group)
 - Focus on Incident Response Coordination
 - Assume it's broken, how do we respond?
 - Planning and Tracking
 - Focus on 'Best Practice'
 - Advice
 - Monitoring
 - Analysis
 - Coordinators for each EGEE ROC
 - plus OSG LCG Tier 1 + Taipei

Operational Security Coordination Team

Enabling Grids for E-sciencE

Vulnerability Group

Enabling Grids for E-science

- Has been set up this summer (CCLRC lead)
- Purpose: inform developers, operations, site managers of vulnerabilities as they are identified and encourage them to produce fixes or to reduce their impact
- Set up (private!) database of vulnerabilities
 - To inform sites and developers
- Urgent action → OSCT to manage
- After reaction time (45 days)
 - vulnerability and risk analysis given to OSCT to define action publication?
 - Will not publish vulnerabilities with no solution
- Intend to report progress and statistics on vulnerabilities by middleware component and response of developers
- Balance between open responsible public disclosure and creating security issues with precipitous publication

Interoperability

Enabling Grids for E-sciencE

EGEE – OSG:

- Job submission demonstrated in both directions
- Done in a sustainable manner
- EGEE BDII and GIP deployed at OSG sites
 - Will also go into VDT
- EGEE WN tools installed as a grid job on OSG nodes
 - Small fixes to job managers to set up environment correctly

EGEE – ARC:

- 2 workshops held (September, November) to agree strategy and tasks
- Longer term want to agree standard interfaces to grid services
- Short term:
 - EGEE→ARC: Try to use Condor component that talks to ARC CE
 - ARC→EGEE: discussions with EGEE WMS developers to understand where to interface
- Default solution: NDGF acts as a gateway

In both cases:

 Catalogues are application choices – generally local catalogues use local grid implementations

Interoperation

- Goal: to improve level of "round-the-clock" operational coverage
- OSG have been to all of the EGEE operations workshops
 - Latest was arranged as a joint workshop
- Can we share operational oversight?
 - Gain more coverage (2 shifts/day)
- Share monitoring tools and experience
 - Site Functional tests (SFT)
 - Common application environment tests
- Strong interest from both sides
- User support workflows interface
- Now: Write a short proposal of what we can do together
 - Both EGEE and OSG have effort to work on this
- Follow up in future operations workshops

Standards & SA1

Enabling Grids for E-sciencE

Interoperation and interoperability

- De-facto standards common understandings/interfaces
 - GT2, GSI, SRM, BDII/GIP (MDS), ...
- Agreement on schema:
 - GLUE 1.2/GLUE 2.0; GGF Usage record for accounting
 - GLUE 2.0 will unify EGEE, OSG, ARC information schema
 - Consider: common operations and job monitoring schema

Top-down vs bottom-up standards – must keep a balance in production

- What is working now (SRM, GLUE) vs what will help in future
- Must maintain production service while introducing new components that apply standards → slow

Operations:

- SA1 "Cookbook": summary of choices and experience deploying EGEE → intend to publish to GGF production grids
- All aspects of operational security are very much collaborative with OSG and others (and very active in GGF)
- Integration and certification is hard standard interfaces and protocols should help

GGF Interoperability discussions

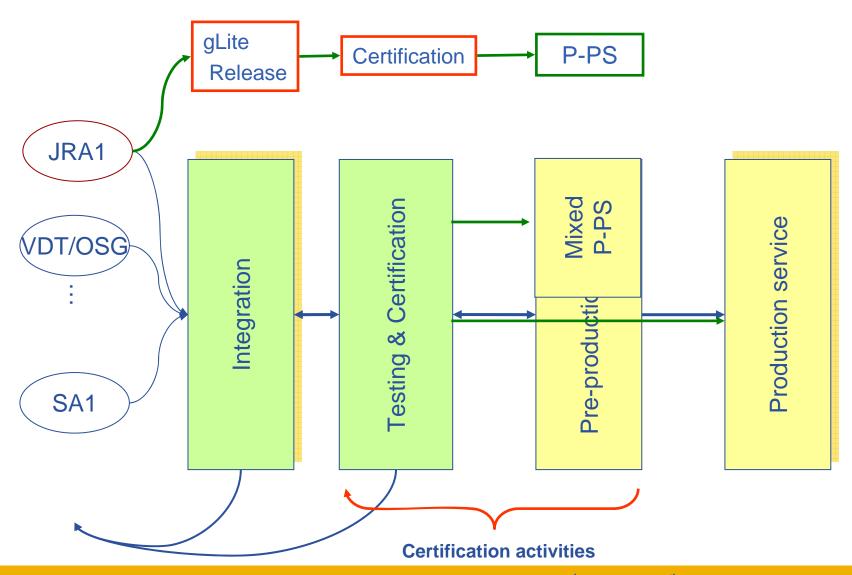
- Integrate bi-lateral interoperability work
- EGEE/SA1 will contribute its work and experiences

Certification and deployment

Enabling Grids for E-sciencE

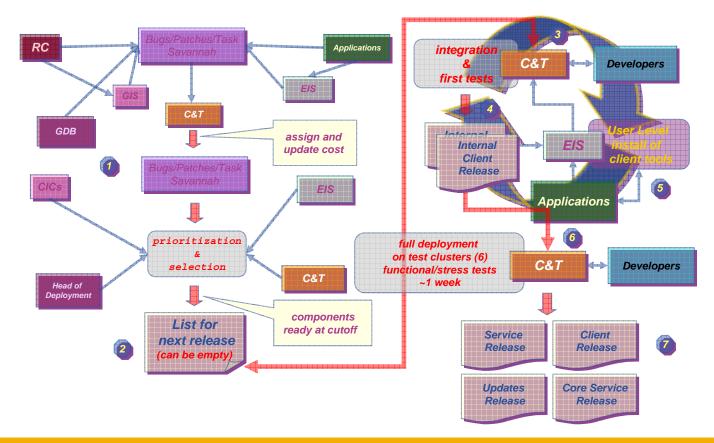
Deployment process has improved significantly:

- Significant effort to improve the deployment process better separation of functional improvements from critical updates
- Simplified installation and configuration tool (YAIM) made life much simpler for administrators
- Wider deployment testing before release; also pre-production
- GGUS coordinates problem follow up


Certification:

- Increased effort was identified (UK, INFN) to address lack of testing of new gLite components
- Parallel processes to speed up gLite testing:
 - Production certification
 - "pure" gLite certification
 - Mixed (LCG-2.x + gLite) → this will become primary strategy

Moving components to production


Enabling Grids for E-sciencE

Deployment process

- Enabling Grids for E-sciencE
- New process for major release was used (3 monthly fixed release)
 - Freeze of the candidate component list at a given date
 - Release at a given date (to allow planning)
 - 3 * 5 working days to upgrade the sites

Process ...

160 **Deployment** ... **→**all 2_4_0 2_3_1 140 Major releases have been ×2_3_0 expected to be installed within 3 120 weeks 100 Release(s) Update 80 Release Notes Update **EIS** 60 User Guide: GIS **YAIM** 40 Release User Notes Installatio **Guides Every Month** 81 76 71 66 51 46 41 36 31 26 21 Every Certification days 3 months is run daily on fixed dates! **Deploy Major Client Release** Releases (Mandatory) ROCs **Every RCs** Month **Re-Certify** CIC **Deploy Client Deploy Service** Releases Releases at own pace (User Space) (Optional) **CICs GIS RCs**

Feedback on process

Enabling Grids for E-sciencE

- Lessons learned
 - Release definition non-trivial with 3 months intervals
 - Closing door for changes is almost impossible
 - Certification Tests need to be extended (performance tests)
 - Patches have to come with a standard set of information
 - Ports, variables, config changes....
 - Updates work quite well
- EGEE production service is a grid of independent federations
 - ROCs schedule upgrades in their region
 - 3 weeks upgrade window is neither realistic nor acceptable
 - Early announcement of new releases needed
 - At -3 weeks
 - complete list of components and changes
 - Problematic, because this means certification has to be finished
 - At -2 weeks
 - deployment tests at: ROC-IT, ROC-SE, ROC-UK
 - Last week to implement feedback and final touches
 - Very useful but cost of 3 weeks extra release time
- Integrate JRA1 and SA1 processes
 - Take into account these experiences gained over past 4 years
 - Ensure (TCG) priorities are driven by the applications

But:
applications
want rapid
updates and
deployment of
new
functionality

gLite Certification Status

- Finished certifying gLite 1.4.1
 - Bugs found: 3 Critical; 1 Normal; 2 Minor
 - Will continue with more in depth testing.
 - Testbed also used to investigate bugs found elsewhere.
- Certification testbed resides at CERN with 4 virtual sites.
- "Mixed" testbed (run and maintained by CNAF PPS)
 - Contains both LCG-2 and gLite services
 - Carries out testing to compare LCG and gLite services (mostly RB so far)
 - Investigates the interoperability of gLite and LCG-2
- The automated test suite is continually updated to cover new functionality provide by gLite.

Middleware convergence

Enabling Grids for E-sciencE

- The current production middleware ("LCG-2") is stable and is daily heavily used
 - This has to be maintained as new components are added or components replaced
 - This will always be the case there will always be new or better services coming
 - Thus, the production distribution must evolve in a controlled way that does not break existing applications but that adds new, or improves existing, functionality
- There is a strong and reliable process in place
 - Integration, testing, certification, pre-production, production
 - Process constantly evaluated and improved
 - All significant components of gLite 1.4/1.5 are either in production (R-GMA, VOMS, FTS) ...
 - ... or on the pre-production service (CE, WMS, Fireman, gliteIO)
 - Anticipate these being available in production distributions (alongside existing components at first) – by mid-2006 (many sooner)
- The current LCG and gLite middleware will converge to a single <u>distribution</u> called gLite in early 2006
- Should not expect (or desire!) a big-bang switch to gLite (or anything else)
- Deploying in production any new software is a slow and time-consuming process, this lesson has been learned many times

SA1: Key points

Enabling Grids for E-sciencE

Accomplishments:

- SA1 is operating world's largest grid infrastructure for science
- Significant resources available
- In use by many real production applications
 - 10K jobs/day
- Daily operations model is now well established
- User support process is in place and being used
 - But it is complex!
- Site stability is better controlled
 - Apps can select good sites
 - Understanding of metrics and what SLA might look like
- Ports to other architectures now exist
 - IA64, other Linuxes
- Convergence of middleware stacks under way
 - gLite components reaching production

Issues:

- Hard to balance:
 - Needs of applications for rapid updates
 - Reliable scheduling wanted by sites
 - Adequate testing and certification
- Moving new middleware into production is time consuming:
 - Unrealistic expectations
 - Very stressful
 - But sw industry knows ...
- Essential to maintain stable production environment
 - While introducing new functionality, new services
 - Backwards compatibility
 - Expensive in resources and support
- Release of accounting (& other) data
 - some site policies restrict release of per-user data (privacy laws)
 - Accounting, job monitoring, ...
- Introducing new VOs is still too difficult

Plans for next period

Remainder of EGEE

- Milestones:
 - MSA1.5 (PM21) Expanded production grid available (50 sites)
- Deliverables:
 - DSA1.7 (PM19) Cookbook internal review
 - DSA1.8 (PM23) Assessment of production operation (update of DSA1.4)
 - DSA1.9 (PM21) Release notes corresponding to MSA1.5
- Full metrics programme implemented (scope agreed in Pisa)
 - Service availability SLA for LCG (MoU)
- Deploy major gLite components in production

Sustainability

- Merge integration, testing (JRA1) with integration and certification (SA1) into single team with distributed partners
- Work with embryonic TCG to ensure application driven priorities reflected in development and deployment priorities
- Prepare processes for EGEE-II

Conclusions

- EGEE/SA1 has deployed and is operating a production grid infrastructure many times the size of that anticipated
 - 180 sites vs 50 as final milestone
- The infrastructure is in daily use by many real applications from many disciplines
 - 10K jobs per day, >1000 years cpu time in 2005
- Daily operations is now an established (but constantly evolving procedure); stability is much better
 - Metrics now established, better understanding of what is needed for SLAs
- User support is complex, but process is in place and providing good service
- Convergence of production and gLite middleware stacks → gLite middleware distribution