IOP HEPP Conference 2005

The LHCb RICH Detectors

James Storey

Outline

- LHCb Goals & Detector Overview
- Particle Identification
- LHCb RICH Detectors
 - Design & Performance
 - Photon-detectors & Readout Electronics
 - System Test of a Prototype RICH2 Detector

The LHCb Experiment

- Forward one-arm spectrometer dedicated to the study of CP violation and rare B-decays at LHC
 - Check consistency of SM through precision measurement of angles and sides of the CKM triangle
 - Search for new physics in rare & SM forbidden decays
- Important to reconstruct & trigger on wide range of decay modes to make independent measurements
 - $B_d \rightarrow J/\psi K_S$, $D^*\pi$, $D^0 K^*$, $\pi \pi$, $K \pi$, ...
 - $B_s \rightarrow J/\psi \phi, D_S K, KK, ...$

Particle Identification (π/K) essential

interaction point

Vertex Locator

Dipole magnet & tracking stations

2 Ring Imaging CHerenkov (RICH) detectors for charged particle identification

Calorimeter system to identify electrons, hadrons and neutrals

Muon system

Hadron Identification with RICH

cumulative plots!

Signal purity 13%

Signal purity 84% Efficiency 79%

RICH essential for hadronic decays

2 RICH, 3 Radiators

Require particle identification over range 2-100 GeV/c

RICH1

- Aerogel (2 ~10 GeV/c)
- C4F10 (10 ~60 GeV/c)

(Bristol, Cambridge, CERN, Edinburgh, Glasgow, Imperial, Oxford, RAL)

RICH2

• CF4 (16 - 100 GeV/c)

Simulated Performance

Momentum (GeV/c)

3 radiators provide excellent pion/kaon separation !

Photon Detector Specification

Requirements

Oľ

- Single photon sensitive in visible & near-UV
- 2.5x2.5 mm² granularity
- High active to total area ratio ~ 70%
- Fast readout 25ns time resolution
- Survive magnetic field of 25 Gauss

Multianode Photomultiplier (Hamamatsu)

Hybrid Photon Detector (DEP/CERN)

Multianode Photo Multipliers with Beetle-Chip Readout

- Single photo tube with 8x8 array of 64 dynode chains
- Quartz lens used to increase active area from $38\% \rightarrow 85\%$
- Effective pixel size $2.1 \text{ mm}^2 \rightarrow 3.2 \text{ mm}^2$

MaPMT / Beetle Test Beam

Aim

• Demonstrate that MaPMT with Beetle chip readout meets the LHCb photon detector specification

Studies made of ...

- 8 dynode MaPMT with Beetle 1.2
- 12 dynode MaPMT with Beetle 1.2 MA0 (Heidelberg, Oxford)

HV characteristics Crosstalk Pulse shape

Why measure the pulse shape ?

Look for Spillover & Overshoot

Beetle 1.2 MA0 Pulse Shape

LHC ΓΗC

Hybrid Photon Detectors

• Electrostatic cross focusing optics

Photo cathode (~20kV)

- 32x256 pixel silicon anode bump bonded to 40MHz binary readout chip
- Effective pixel size 2.5mm²

Readout Electronics

System Test of a Prototype RICH2 Detector

Aim

Ensure that HPD & other elements of RICH detector will work in a realistic LHC environment;

- Preproduction HPD
- Readout electronics
- Mechanics
- Power distribution

Test beam Set-up

- CERN 10 GeV/c pion & electron beam
- Prototype detector (N₂ & C₄F₁₀ radiators)
- 6 HPDs on 3 columns tested

System Test Readout Electronics

LHC

System Test Readout Electronics

LHC

Cherenkov Ring

• Data of 6 HPDs readout at full LHC readout speed

C₄F₁₀ pion run: 100,000 events

Summary

The RICH Detectors are essential for Particle Identification at LHCb.

A prototype RICH2 detector has been built & tested. Demonstrated integration of:

- HPD
- Readout Electronics
- Mechanics

Summary

Construction well underway!