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Outline.

» What challenges are we faced with when attempting to compare data with
theoretical predictions for moments of structure functions?

» How can we overcome these challenges or at least quantify the uncertainties
involved?

» Extracting a value for QCD A4z by fitting theory predictions to data.
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Deep Inelastic Scattering

Structure functions can be used to describe DIS processes
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We wish to compare experimental data for F»; and F5 with QCD predictions. To compare
with theory we compute the moments of the structure functions.
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Challenges.

Limitations of the data:

We have no data for high z at low Q? and for low z at high Q>.

Theoretical Uncertainty:

The Theoretical prediction depends on our choice of Factorization and Renormalization
Schemes (FRS).
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Data for x F3 from CCFR
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Modelling the Structure Functions.

We choose some fitting method e.g. xF5 = Az” (1 — 2)C.
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Large uncertainty due to gaps in data.

= Result is dependent on method of fit.
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Bernstein Averages

Bernstein Polynomials are polynomials in z2.
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Constructed to be 0 at z = 0, 1 and normalized to unity.
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Bernstein Averages

If we multiply the data for z F’s by these polynomials.
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Bernstein Averages for x F3
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Testing the Method
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Theoretical Prediction

The perturbative contributions to the F's moments are given by

My, =< O(M) > C(u, M)

Where
M 0<0> 2 3
0SS oM — da — dia dsa
Oa
M@lnM = 0@

and C is the coefficient function.

Clu, M) =14 r1a +re2d° + - -
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Scheme Dependence of the Moments.

Integrating the equations for < O > gives us

ca
1+ ca

M = A(n) " @ 2 7 e a0 )
(%)

Where a = a(M) and a = a(M = u). Z(a) is a polynomial in a with coefficients related to
the beta function and anomalous dimension coefficients.

The standard approach is choose a physical scale, setting M = u = Q.

o d/b )
M = A(n) (1 i (Ef(i?)) (14+ R1a(Q) + R2a(Q)” - -)

But there is no concrete physical motivation for this.
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FRS Invariant Quantities.

We can separate the coefficients r,, into FRS dependent and FRS invariant pieces.

o= e = X1(Q)
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X, are FRS invariant quantities.
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FRS Invariant Quantities.

If we define a¢ as the FRS predictable part of C.

C = a+ria®+(ri+er—cat+ Xo)ad +---
a = a+ria’+(ri+eri—c2)a’+---
Defining a scheme for whichry = c2 =c3 =--- =d; = ds = --- = 0 allows us to write the
moments as
M = A(n) ( = )d/b(1+X2a3+...)
1+ cag
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CORGI QCD

This scheme is known as the 't Hooft scheme and in it the beta function has a particularly
simple form

8@0

2
= — 1
9In 1 bag (1 + cao)

Which has the following solution

1
c[l +W(2(Q))]

ao —

Where W is the Lambert W function defined by W (z) exp[W(z)] = z and

@ = (g
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Results for F3

» We compare the theoretical prediction for the Bernstein Polynomials with the
experimental data.

» We have 201 Bernstein averages, the highest being Fio 9. The highest moment we
use is Mas.

» The fitting parameters are A5z and the non-perturbative constants, A(n).
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With Aq75 = 240 £ 41MeV and x°/d.o.f = 4.2/(201 — 11).
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Further Detalls

» We have also performed an analysis of £ moments.

»  We now have access to theoretical predictions for odd and even moments.

»  We have modified the expressions in order to account for quark thresholds.
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Summary.

» We can minimize the impact of ‘missing’ data by using Bernstein averages instead
of the moments.

» We need to be careful about which Averages we use.

» Factorization and Renormalization scheme dependence can be quantified.

» CORGI QCD is consistent with experimental data.
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