

UNIVERSITY of GLASGOW

The Underlying Event in Jet Physics at TeV Colliders

Arthur M. Moraes

University of Glasgow

PPE – ATLAS

Outline:

- LHC and ATLAS;
- II. Hadron collisions: how can we model them?
 - Describing soft hadronic interactions.
- **III.** The underlying event in jet analysis;
- **IV.** LHC predictions;
- V. Conclusions.

Outline:

LHC and ATLAS;

- II. Hadron collisions: how can we model them?
 - Describing soft hadronic interactions
- III. The underlying event in jet analysis
- **IV**. LHC predictions;
- V. Conclusions.

Proton-proton collisions at the LHC

■ p-p collisions at √s = 14TeV

> low-luminosity: L ≈ 2 x 10³³cm⁻²s⁻¹ (L ≈ 20 fb⁻¹/year)

high-luminosity: L ≈ 10³⁴cm⁻²s⁻¹ (∠ ≈ 100 fb⁻¹/year)

- Essentially all physics at LHC are connected to the interactions of *quarks* and *gluons* (small & large transferred momentum).
 - Hard processes (high-pT): well described by perturbative QCD
 - **Soft interactions (low-pT)**: require non-perturbative phenomenological models (strong coupling constant, $\alpha_s(Q^2)$, saturation effects,...)

The *underlying event* is dominated by *"soft"* partonic interactions.

Models for soft hadronic interactions

Uncorrelated soft scatter – HERWIG/UA5 model (S.U.E.) (http://hepwww.rl.ac.uk/theory/seymour/herwig/)

Multiple interactions:

Soft partonic scatters matched to hard 2 \rightarrow 2 scatters:

• **PYTHIA (several options)** (<u>http://www.thep.lu.se/~torbjorn/Pythia.html</u>)

$$\sigma_{\text{int}} = \int_{\mathbf{p}_{t_0}}^{s/4} \frac{d\sigma}{dp_t^2} dp_t^2 \qquad \begin{array}{c} \mathbf{n} \sim \sigma_{\text{int}} \\ \downarrow \text{pt}_0 \uparrow \text{n} \\ \text{(and vice-versa)} \end{array}$$

р

• JIMMY (multiple parton interactions – b-space picture) (http://jetweb.hep.ucl.ac.uk/JIMMY/index.html)

$$\sigma_n = \int d^2b \, \frac{(A(b)\sigma^{inc})^n}{n!} \exp(-A(b)\sigma^{inc})$$

1.

2

Questionable modelling for:

Minimum-bias and UF hard

Energy dependence;

component;

р

• **PHOJET (based on DPM)** (http://www-ik.fzk.de/%7Eengel/phojet.html)

IOP Conference, 21st – 23rd March 2005

- LHC and ATLAS;
- II. Hadron collisions: how can we model them?
 - Describing soft hadronic interactions

II. The underlying event in jet analysis

- **IV.** LHC predictions;
- V. Conclusions.

Underlying event in charged jet evolution (CDF analysis – Run I data) Phys. Rev. D, 65 092002 (2002)

- All particles from a single particle collision *except* the process of interest.

- Sometimes, the underlying event can also be defined as everything in the collision except the hard process.
- It is not only minimum bias event!
- The underlying event has **hard** (multiple "semi-hard" parton scatterings) and **soft** components (beam-beam remnants).

IOP Conference, 21st – 23rd March 2005

<N_{chg}> and <p_T^{sum}> distributions (particles from the underlying event)

Tuning models to the underlying event

A. M. Moraes

Measurements recently made available for tuning models

Examples of MC tunings for the UE

PYTHIA6.2 tunings

IOP Conference, 21st – 23rd March 2005

HERWIG6.5 + JIMMY4.1 tunings

IOP Conference, 21st – 23rd March 2005

LHC predictions: JIMMY4.1 Tunings A and B vs. PYTHIA6.214 – ATLAS Tuning

Predictions for the UE: from Tevatron to LHC energies

		JIMMY4.1		PYTHIA6.214				
Measurement		Tuning A	Tuning B	ATLAS Tuning	CDF Tuning	PHOJET1.12		Data
Tevatron	<n<sub>chg> pT_{ljet} > 10 GeV</n<sub>	2.4	2.3	2.4	2.3		2.1	2.3
	<pt<sub>sum> pT_{ljet} > 10 GeV</pt<sub>	2.5	2.1	2.3	2.6		2.0	2.6
ЭНЛ	<n<sub>chg> pT_{ljet} > 10 GeV</n<sub>	12.2	9.2	6.6	4.7		3.0	"?"
	<pt<sub>sum> pT_{ljet} > 10 GeV</pt<sub>	11.5	8.5	7.5	6.5		3.5	"?"
x 5 x 4 x 3 x 2 x 1.5 x "?"								
				LHC				

Measurements recently made available for tuning models

The underlying event in Hard Interactions at the Tevatron ppbar CDF analysis – Run I data collider, CDF Collaboration, PRD 70, 072002 (2004). • Two cones in $\eta - \phi$ space are defined: "MAX/MIN analysis" $\eta = \eta_{\text{ljet}}$ (same as the leading jet) Lead Jet 90° cones/ used in this analysis 、 $^{\wedge}_{\mathrm{S}}^{3.5}$ $\phi = \phi_{ljet} \pm 90^{\circ}$ PYTHIA6.214 - ATLAS - Min cone R=0.7 PYTHIA6.214 - ATLAS - Max cone P_T^{90max} and P_T^{90min} Second Jet 2.5 $p\bar{p}$ interactions - $\sqrt{s} = 1.8 \text{ TeV}$ 2 -n 6 $< P_T > (GeV/c)$ 1.5 PYTHIA6.214 - ATLAS - Min cone PYTHIA6.214 - ATLAS - Max cone 5 1 pp interactions - $\sqrt{s} = 1.8 \text{ TeV}$ 4 0.5 3 0 50 100 150 200 250 0 E_{T leading jet} (GeV) 2 1 0 50 100 150 200 250 E_{T leading jet} (GeV) 18 M. Moraes

CDF analysis - Run I data

"MAX/MIN analysis"

 The underlying event is measured for jet events at two different colliding energies: 630 GeV and 1800 GeV.

 This will provide important information on how to model the energy extrapolation in UE models.

$$√s = 630 \text{ GeV}$$
 $√$
 $√s = 1.8 \text{ TeV}$ $√$
 $√s = 14 \text{ TeV}$?

A. M. Moraes

19

Conclusions:

- Current underlying event data can be described with appropriate tunings (PYTHIA, PHOJET and HERWIG+JIMMY).
- There are sizeable uncertainties in LHC predictions generated by different models.
- We need to understand better how to tune the energy dependence of the event activity: multiple parton scattering rate?
- New MC models (e.g. PYTHIA6.3) and measurements can provide us with more tools to understand minimum-bias and the UE, and also to estimate more precisely this physics at the LHC.
- At the LHC, the best chance to the UE is at the low (very low?) luminosity runs.
 We are currently studying strategies to perform these measurements at ATLAS.

Backup...

Dijet azimuthal decorrelation

B

hep-ex/0409040 Sep. 2004

Run 178796 Event 67972991 Fri Feb 27 08:34:15 2004

Jets are defined in the central region using seedbased cone algorithm (R=0.7)

> *leading jet* $p_T^{max} > 75 \text{ GeV}$ second leading jet $p_T^{max} > 40 \text{ GeV}$ both leading p_T jets: $|y_{jet}| < 0.5$

Dijet production in hadron-hadron collisions result in $\Delta \phi_{\text{dijet}} = |\phi_{\text{jet1}} - \phi_{\text{jet2}}| = \pi$ in the absence of radiative effects.

 $\Delta \phi_{\text{dijet}} = \pi \rightarrow \text{exactly two jets, no further radiation}$

 $\Delta \phi_{dijet}$ small deviations from $\pi \to$ additional soft radiation outside the jets

 $\Delta \phi_{\text{dijet}}$ as small as $2\pi/3 \rightarrow$ one additional high-p_T jet

small $\Delta \phi_{\text{dijet}}$ – no limit \rightarrow multiple additional hard jets in the event

IOP Conference, 21st – 23rd March 2005

IOP Conference, 21st – 23rd March 2005

Dijet azimuthal decorrelation: ISR

PARP(67) defines the maximum parton virtuality allowed in ISR showers (PARP(67) x hard scale Q²)

PARP(67)=1 (default): distributions underestimate the data! Need to increase the decorrelation effect, i.e. increase radiative and multiple interaction effects.

Increasing PARP(67) (from 1 to 4) the azimuthal decorrelation is increased.

Best value is somewhere between PARP(67)= 1 and 4!

IOP Conference, 21st – 23rd March 2005