Measurement of the Forward-Backward Charge Asymmetry from W -> e v Production in pp Collisions at \sqrt{s} = 1.96 TeV hep-ex/0501023

Cigdem Issever On the behalf of CDF Collaboration

more information: http://fcdfwww.fnal.gov/physics/ewk/2004/w_charge_asym/w_charge_asymmetry.html

22.05.2005 IOP 2005

PDFs significant for many measurements at the Tevatron

How can we gain insights into parton momentum distribution functions (PDFs) of the proton at the Tevatron???

Measure W Charge Asymmetry

$$A = \frac{d\sigma(W^+)/dy_W - d\sigma(W^-)/dy_W}{d\sigma(W^+)/dy_W + d\sigma(W^-)/dy_W}$$

PDFs not well known at high x (high η) \uparrow Don't already know the answer, need to measure. Can improve many of our upcoming measurements.

22.05.2005 IOP 2005

Reason for W Charge Asymmetry?

Reason for W Charge Asymmetry?

W⁺ and W⁻ boosted in forward and backward direction; Information about u(x)/d(x) convoluted in W Asymmetry

22.05.2005 IOP 2005

Measure Charge Asymmetry of Lepton Channel

Asymmetry in W production complicated by unknown v p_z use lepton asymmetry:

$$A_l(\eta) = \frac{d\sigma(e^+)/d\eta - d\sigma(e^-)/d\eta}{d\sigma(e^+)/d\eta + d\sigma(e^-)/d\eta} \simeq \frac{d(\mathbf{x})}{\mathbf{u}(\mathbf{x})}$$

which convolves W production with V-A decay.

sensitive to PDF's !

uncertainty on PDF's significant error in several measurements at CDF !

CDF Run1 Result

Calorimeter Seeded OI Si-Tracking (PHX)

W Event Selection

- Baseline electron selection
- PHX track optimized for good charge identification:
 - #hits <u>></u> 4
 - χ² < 8
 - Δχ² > 0.5
 - Pull Ratio = $\frac{\chi^2_{seed}/dof$ for track with lesser χ^2_{total}/dof χ^2_{seed}/dof for track with greater χ^2_{total}/dof < 0.4
- [•] E_T > 25 GeV
- Missing $E_T > 25$ GeV
- $50 < M_T < 100 \text{ GeV/c}^2$

Raw, uncorrected Charge Asymmetry

22.05.2005 IOP 2005

Charge Identification

Incorrectly identified charge dilutes asymmetry. We can correct for it, if we know f=#wrong/total.

MC does not include residual misalignments. Must measure it in data as function of η .

Measure f with $Z \rightarrow e^+e^-$. Use central ($|\eta| < 1.5$) leg to tag charge of other leg.

PHX Charge Misidentification Rate

Error calculated with Bayesian prescription

Correction of Raw Asymmetry for Charge MisID

A charge dependence of charge id would directly bias measurement, hence: $A = (A_{raw} + f_{+} - f_{-}) / (1 - f_{+} - f_{-})$

Background Corrections

We correct the asymmetry in each η bin for backgrounds from

 $-W \rightarrow \tau \nu \rightarrow e \nu \nu \nu$

Asymmetric, measured from MC, 4%

 $- Z \rightarrow e^+ e^-$

Asymmetric, measured from MC, 1%

- QCD

Symmetric, measured from data using Isolation vs MEt.

QCD Background (BKG)

upper limit

22.05.2005 IOP 2005

Corrected Asymmetry with stat + total uncertainties

No evidence of CP asymmetry, level of agreement $\chi^2/dof=9.5/11$. We are using method by R. Barlow, PHYSTAT2003, SLAC, Stanford, California, September 8-11, 2003, for incorporating the asymmetric uncertainties in the error propagation using likelihood distributions. **NEW** : E_T Dependence of Asymmetry

For higher E_T electrons, η is closer to y_{W_1}

More information can be gained by measuring A in bins of electron $E_{T_{.}}$ Current statistics allow use of two E_{T} bins.

> 25 GeV < E_{T} < 35 GeV 35 GeV < E_{T} < 45 GeV

Results for 25 GeV < $E_{\rm T}$ < 35 GeV

Corrections for charge mis-id and backgrounds are measured and applied for each $E_{\rm T}$ bin.

Results for 35 GeV < E_T < 45 GeV

 χ^2 probabilities are 11% for CTEQ and 0.6% for MRST Inclusion of our results will further constrain fits and improve predictions.

Outlook & Conclusion

- Results will be included into new PDF fits.
- CDF is beginning to explore a new method which fully reconstructs the W direction, see talk of Boyoung Han at APS 2005.
- CDF Run2 W Charge Asymmetry measurement provides new PDF constraints, particularly when separated by E_T range.
- Measured Asymmetry for the first time in different E_T bins.

Backup Slides

Systematic

- Statistical uncertainty on charge mis-id rate dominates
- Uncertainty from QCD jet background is small and other backgrounds are negligible
- Using COT tracks, when available, results in no significant difference
- Checked that variation of detector alignments within their uncertainty has no significant effect on asymmetry
- No difference between asymmetry in the EAST and WEST
- Studied possible biases introduced by detector effects in the MC and found no significant effects.

$ \eta_{e} $		$A(\eta_{e})$	
	$E_T > 25$	$25 < E_T < 35$	$35 < E_T < 45$
0.11	$3.4 \ ^{+1.6}_{-1.5}$	$4.8~\pm~2.0$	$2.3~\pm~1.9$
0.30	6.2 ± 1.2	7.5 ± 1.9	$6.3~\pm~1.5$
0.50	$7.5~\pm~1.5$	$7.5~\pm~1.9$	$8.8~\pm~1.8$
0.70	$12.6~\pm~1.3$	$13.5~\pm~1.8$	$11.8~\pm~1.7$
0.89	$12.2 \ ^{+1.6}_{-1.4}$	$12.8~\pm~2.3$	$12.6 \ ^{+1.7}_{-1.9}$
1.09	$13.8~\pm~2.3$	$13.1~\pm~3.5$	$17.1~\pm~2.9$
1.33	$16.8~\pm~1.6$	$17.0 \ {}^{+3.4}_{-3.0}$	$17.6~\pm~2.4$
1.57	$13.0~\pm~1.8$	$7.0 \ ^{+3.8}_{-3.6}$	$15.7~\pm~2.2$
1.81	$2.9~\pm~2.9$	$-11.5 \begin{array}{c} +4.2 \\ -4.5 \end{array}$	$13.4 \substack{+4.4 \\ -4.6}$
2.04	$-0.4 \begin{array}{c} +6.2 \\ -5.7 \end{array}$	-23 ± 6	$28 \ ^{+12}_{-10}$
2.31	$-29~\pm~10$	$-49~\pm~14$	$-9 \ ^{+26}_{-23}$

Results: W Charge Asymmetry w. total error

CDF Run 2 Detector

Plug/PES Alignment

Align PLUG calorimeter with COT tracks: allow offsets in x,y,z and a rotation in phi

Background Determination Method

26