Search for associated chargino-neutralino production in three-lepton events at CDF

Martin Griffiths

IOP HEPP Conference, Dublin March 21st - 23rd 2005

THE UNIVERSITY of LIVERPOOL

Outline

- Theory and motivation
- CDF and the TeVatron
- The signal three leptons + missing energy
- Backgrounds
- Event selection
- Results
- Conclusions and outlook

Supersymmetry

- Many hints of new physics (neutrino mass, WMAP) SUSY is most well-established BSM theory - solves hierarchy problem.
- Symmetry of fermions and bosons → sparticle partner for every particle.
- Complicated! MSSM has over 100 parameters and two Higgs sectors.
- Symmetry must be broken mSUGRA model of breaking reduces parameter space to:
 - m₀ scalar mass at unification scale
 - m_{1/2} gaugino mass at unification scale
 - tan β ratio of vacuum expectation value of Higgs fields.
 - A₀ trilinear gauge coupling
 - Sign (µ) Higgs mass term
 - mSUGRA is a 'toy' model but we have to start somewhere!

Supersymmetry

CDF Run II at the TeVatron

- Accelerator and detector upgraded 2001.
- Performance improving every day!
- This analysis uses 346 pb⁻¹.
 4-9 fb⁻¹ by 2009.

Chargino-neutralino production...

- We search for associated production of the first chargino and second neutralino in 1.96 TeV proton-antiproton collisions.
- Assume R-parity conservation and mSUGRA → charginos are lighter than gluinos and squarks.
- Production cross-section O (1 pb) but larger for heavier squarks as diagrams interfere destructively.

...and decay

- Look for decay to 3 isolated charged leptons + missing energy from LSP and neutrino.
 - BR to leptons decreases with heavier sleptons.
 - Decay to tau dominates at high tan β.
- Clean signature with small SM background.
- Best chance of finding SUSY at TeVatron.

mSUGRA parameter space

- We use a point which has reasonable sensitivity and gives masses just above LEP limits.
 - $M_0 = 100$, $M_{1/2} = 180$, tan β = 5, $\mu > 0$, $A_0 = 0$. $M(\chi \pm) = 115$ GeV.
 - Before any cuts, expect
 ~50 events in 350 pb⁻¹.
- Plan to scan more points in parameter space.

Favoured by WMAP

Signal: lepton p_T

Backgrounds

- Backgrounds come in two categories:
 - Three real leptons: WZ, ZZ, ttbar.
 - Two real leptons and one fake lepton: WW, DY.
- Fake leptons from:
 - QCD background. Study this background in jet-triggered data samples as MC can't be trusted.
 - Real lepton radiating a photon which converts. Wellmodelled in MC.

Analysis strategy

- ee + I channel.
 Combine with others for final limit.
- Cuts shown on right.
- Keep signal region blind, until background is understood in control regions.

Variable	Cut
Invariant mass of two leptons (GeV)	> 15, reject Z window (76 - 106)
Missing energy (GeV)	> 15
No. of jets	< 2 above 20 GeV
Third lepton	Loose e or μ (> 5 GeV)

11

Kinematic cuts: invariant mass

12

Kinematic cuts: missing energy

Kinematic cuts: jets

Results for ee channel

 Unblinded signal region after detailed study of control regions.

Expected	0.5
signal	
SM	0.16 ±
expectation	0.07
Observed	0

Acceptance ~ 1%

Conclusions and outlook

- Completed a search for chargino-neutralino production in the ee + lepton + missing energy final state (shown at Moriond).
- Several other channels near completion. Will combine with them for final limit.
- Limit expected to be comparable to DØ combined limit:
 σ*BR < 0.24 pb, chargino mass > 115 GeV.

 Plan to increase acceptance by including forward electrons and re-optimising kinematic cuts.