Branching Fraction and CP asymmetry in $B^0 \rightarrow \pi^0 \pi^0$ Decays

Carlos A. Chavez

IOP Dublin, March, 2005

Overview

- Introduction & motivation $B^0 \rightarrow \pi^0 \pi^0$
- Analysis procedure
- Results
- Summary

The CKM matrix & CP violation

CKM matrix describes mixing between flavor and weak eigenstates in the Standard Model.

$$V_{CKM} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix}$$

3x3 unitary matrix:3 real parameters,1 phase: only source of CPV in SM

Unitarity implies

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

Wolfenstein parameterization

the amount of CP violation in SM

Observing CP Violation at BABAR

Three observable effects in **B** decays to a final state **f**:

CP violation in mixing ($|q/p| \neq 1$) $B^0 \rightarrow \overline{B}^0 \neq \overline{B}^0 \rightarrow B^0$

(direct) CP violation in decay ($|\overline{A} / A| \neq 1$)

$$B^0 \to f \neq \overline{B}{}^0 \to \overline{f}$$

(indirect) CP violation in the interference between mixing and decay ($Im \lambda_{f_{cr}} \neq 0$)

Time dependent effect is sensitive to measure unitarity triangle angles

How to measure α from $B^0 \rightarrow \pi^+ \pi^-$ decays

Decays sensitive to α

 $B^0 \rightarrow \pi^+\pi^-$

Time dependent cp asymmetry:

$$a_{\pi\pi}(t) = \frac{\Gamma_{B^0 \to \pi\pi} - \Gamma_{\overline{B}^0 \to \pi\pi}}{\Gamma_{B^0 \to \pi\pi} + \Gamma_{\overline{B}^0 \to \pi\pi}}$$

Can be written as:

$$= S_{\pi\pi} \sin(\Delta m_B \Delta t) - C_{\pi\pi} \cos(\Delta m_B \Delta t)$$

$$S \propto 2 \operatorname{Im} \lambda \qquad C \propto 1 - |\lambda|^2$$
Indirect CP Direct CP
relevant to α

Measuring α in presence of penguins

Coefficients of time-dependent CP Asymmetry in $B^0 \rightarrow \pi^+\pi^-$ decays

Measuring α from $B \rightarrow \pi \pi$ Isospin

$B^0 \rightarrow \pi^0 \pi^0$ **CP** asymmetry

Time dependent CP asymmetry

Analysis procedure

Final efficiency 1.3% and use world average BF to fix number of events in fit

Babar PRL 93, 051802 (2004), Belle hep-hex/0406006

Analysis procedure

With a preselected sample of 8153 events

• Method

Extended ML fit simultaneously determines:

$$N_{\pi^0\pi^0}$$
 , $N_{q\overline{q}}$, $A_{\pi^0\pi^0}$, $A_{q\overline{q}}$

Yields & Asymmetries

and uses:

- Kinematic variables for signal selection
- Event shape for signal-background sepatation
- Use of tagging information

$$m_{ES}, \Delta E, Fisher$$

PDF Parameterization

Background suppression

•Continuum rejection using event shape variables

Fit = $q\bar{q}$ bkgd + $B^{\pm} \rightarrow \rho^{\pm}\pi^{0}$ + signal

Systematic errors and checks

Main sources of systematic errors

Source	ΔN_{00}	ΔC_{00}
Uncertainty in $\rho\pi$ BF	+-2.12	+-0.012
Uncertainty in $\rho\pi$ Asymmetry	+4	+-0.051
π reconstruction	+-4.45	+-0.014
∆E-Mes Monte Carlo corrections	+-1.12	+-0.015
Tagging efficiencies	+-0.01	+-0.032

Cross checks

Fit compatible with 2003 result

Fit performed on different data samples are consistent

Toy MC studies to look for potential fit bias

Cut & Count analysis compatible with Likelihood fit result

Using MC, check for crosstalk Between different species, minimal

Signal Event

Backup slides

Dublin, March, 2005

With no penguins

D0 mining

 $S_{\pi\pi} = \sin 2\alpha$ $C_{\pi\pi} = 0$

With large penguins and $|P/T| \sim 0.3$

Carlos A. Chavez

$$S_{\pi\pi} = \sqrt{1 - C_{\pi\pi}^2} \sin 2\alpha_{eff}$$
$$C_{\pi\pi} \propto \sin \delta$$

$$\lambda_{\pi\pi} = \frac{q}{p} \frac{A_{\pi\pi}}{A_{\pi\pi}} = e^{-i2\beta} e^{-i2\gamma} = e^{i2\alpha}$$

$$\lambda_{\pi\pi} = e^{i2\alpha} \frac{T + P e^{+i\gamma} e^{i\delta}}{T + P e^{-i\gamma} e^{i\delta}}$$

Interference of suppressed $b \rightarrow u$ "tree" decay with mixing

but: "penguin"

is sizeable!

Significance calculation

The significance is defined as root square of the change In the log likelihood when the asymmetry is fixed to zero.

B Flavour Tagging

- Tagging algorithm with physics-based neural networks
 - Inputs include leptons, kaons, slow- π (from D^{*}), and high-momentum tracks
 - Outputs combined and categorized by mistag probability (w)
- 5 mutually exclusive hierarchical categories: cleaner
 - Lepton isolated high-momentum leptons
 - Kaon I high quality kaons or correlated K⁺ and slow- π^-
 - Kaon II lower quality kaons, or slow- π
 - Inclusive unidentified leptons, poor-quality kaons, high-momentum nistag prob tracks
 - Untagged no flavour information is used

signal

arger

67% of events have some flavour information

$Q = \epsilon (1 \ 2w)^2 = (28.4 \pm 0.7)\%$

PDF Parameterization

Variable	Signal PDF	Background PDF
m _{ES}	2-D smoothed hist.	Argus
ΔE	2-D smoothed hist.	Poly2
Fisher	Steep function (10 bins)	Steep function (10 bins)