$B^{-} \rightarrow D^{0} K^{*-}$ and the CKM angle γ at BABAR

Paul S Jackson

Paul Jackson - RHUL@IOP Dublin - 22nd March 2005

Page 1

Introduction

- BABAR
- The CKM matrix and unitarity triangle
- Extracting γ with the GLW method
- Event selection
- Fit motivation
- The future of the measurement

The BABAR Detector

- Situated on the PEP-II storage ring at SLAC
- e⁺ e⁻ colliding B-factory

Page 3

- Asymmetric beam energies
 - 9 GeV e⁻
 - 3.1 GeV e⁺
- 210 fb⁻¹ on peak data to date

The CKM Triangle and γ

$$\begin{pmatrix} d'\\s'\\b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\s\\b \end{pmatrix}$$

- 6 Unitarity triangles can be drawn.
 - "The" Unitarity triangle has sides of comparable length.

•
$$V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0$$

•
$$\gamma = \operatorname{Arg}(-V_{ub}V_{cb}^*/V_{cd}V_{cb}^*)$$

• Current estimate from global fit to $|V_{UB}|/|V_{CB}|$, ε_{K} , Δm_{d} , Δm_{s} and $\sin(2\beta)$,

•
$$\gamma = 57 \pm 9^{\circ}$$

Page 4

The GLW method to extract γ

- But: small branching fractions.
- CP odd = $K_s \pi$, $K_s \varphi$, $K_s \omega$. (~10⁻⁶)
- CP even = KK, $\pi\pi$. (~10⁻⁷)
- Non CP = $K\pi$, $K\pi\pi^{0}$, $K\pi\pi\pi$ (~10⁻⁵)

Page 5

Current Standing

- BABAR ($D^0 \rightarrow K_s \pi, K_s \varphi, K_s \omega, KK, \pi\pi, K\pi, K\pi\pi^0, K3\pi$) ($K^* \rightarrow K_s \pi$) 205fb⁻¹
 - $-\mathcal{A}_{CP+} = -0.09 \pm 0.20(stat.) \pm 0.06(syst.)$
 - $\mathcal{A}_{CP-} = -0.33 \pm 0.34(stat.) \pm 0.10(syst.) \ (+1.15 \pm 0.12) \cdot (\mathcal{A}_{CP-} \mathcal{A}_{CP+})$
 - $\mathcal{R}_{CP+} = +1.77 \pm 0.37(stat.) \pm 0.12(syst.)$
 - $\mathcal{R}_{CP-} = +0.76 \pm 0.29(stat.) \pm 0.06(syst.) \stackrel{-}{_{-}} \stackrel{0.04}{_{-}}$
 - The 3rd Error term accounts for possible interference in the final states of ϕ and ω resonances.
- Belle $(D^0 \rightarrow K_s \pi, K_s \varphi, K_s \omega, KK, \pi\pi, K\pi, K\pi\pi^0, K3\pi)$ $(K^* \rightarrow K_s \pi)$ 95 fb⁻¹
 - $A_{+} = -0.02 \pm 0.33(\text{stat}) \pm 0.07(\text{sys})$
 - $A_{-} = -0.19 \pm 0.50(\text{stat}) \pm 0.04(\text{sys})$
- Both measurements are dominated by statistics!
- Increase stats with the $K^*(K\pi^0)$ decay.

Page 6

Selection Variables

For $B^{-} \rightarrow D^{0} K^{*-}(K\pi^{0})$

Key: Continuum rejection, fake D⁰ rejection, selection refinement, signal region.

- Fisher discriminant
 - composed of several event shape variables.
- The invariant mass of K*, D⁰, π⁰, ω.
- $Cos(\theta_{Helicity})$ on K* and D⁰
 - The "decay angle"
 - The angle between the granddaughter in the daughter's rest frame, and the daughter in the mother's rest frame.
- Particle Identification (PID) on Kaons and Pions.

Page 7

•
$$m_{ES} = (E^{*2}_{BEAM} - p^{*2})^{1/2}$$

• $\Delta E = E^*_{Y(4s)} - E^*_{BEAM}$ Where $p^* = B$ momentum in Y(4s) centre-of-mass frame.

- Note:
 - Cuts are optimised on MC to maximise Signal/(Signal+Background)^{1/2}.
 - Cuts are Aligned with $K^*(K_s\pi)$ decay modes.
 - **Blind** analysis.

Discriminating Variables Used ($K\pi\pi^0$)

Signal vs **Background** (MC) scaled to unit area.

Page 8

Efficiency Figures

- 3σ slice in ΔE (75 MeV).
- Fitted in m_{ES} and integrated 5.27-5.29 GeV.

	Eff (%)	Kπ ⁰ Events in 200fb ⁻¹ (MC)	
Κπ	5.0 ± 0.1	69 ± 1.5	
Kππ⁰	2.2 ± 0.1	105 ± 3.7	
K3π	2.8 ± 0.1	74 ± 2.6	K*(K _s π) 205fb ⁻¹ (ICHEP04-Data)
	Total	248 ± 4.8	498 ± 29
KK	4.4 ± 0.1	8.6 ± 0.2	
ππ	4.1 ± 0.1	2.9 ± 0.1	K*(K _s π) 205fb ⁻¹ (ICHEP04-Data)
	Total	11.5 ± 0.1	15.1* ± 5.8
K _s π	0.9 ± 05	8.2 ± 0 .4	
Κ _s φ	2.2 ± 08	1.7 ± 0.1	
K _s ω	0.8 ± 05	2.3 ± 0.2	K*(K _s π) 205fb ⁻¹ (ICHEP04-Data)
	Total	12.2 ± 0.5	34.4 ± 6.9

- Sample is then split on charge!
- Addition to $K^*(K_s\pi)$ modes is hoped.

Background Numbers

- Sources of background "peaking" in m_{ES}:
 - Non-resonant $(B^- \rightarrow D^0 K^- \pi^0)$.
 - Will peak in signal region of ΔE and m_{ES} .
 - Unknown BR, Interferes with signal, introduces an additional strong phase!
 - requires special treatment.
 - Decays with similar final states which don't actually contain a D^0 .
 - The other source of background is from continuum processes.
 - Well understood shape modeled in the fit.

The number of events in a 200fb ⁻¹ sample of generic MC								
	UDS+CC	B⁰	B [±] (Arg)	B [±] (Peak)	Signal	S/Sqrt(S+B)		
Kπ	10.7 ± 2.8	0.9 ± 0.5	5.9 ± 1.6	13.7 ± 2.9	69 ± 1.5	6.9		
<mark>Kππ⁰</mark>	110.5 ± 6.4	11.5 ± 1.6	26.2 ± 3.9	24.8 ± 6.4	105 ± 3.7	6.3		
<mark>K3π</mark>	61 ± 5	26.2 ± 2.3	23.9 ± 3.6	14.5 ± 5.7	74 ± 2.6	5.2		
KK	3.8 ± 2.7	0.7 ± 0.4	1.9 ± 1.0	3.7 ± 1.6	2.7 ± 0.1	2		
ππ	5.8 ± 2.7	0.5 ± 0.4	2.5 ± 1.1	0.0 ± 2.6	2.9 ± 0.1	0.7		
K _s π⁰	2.3. ± 1.3	0.5 ± 0.3	3.4 ± 1.6	1.2 ± 1.2	8.2 ± 0 .4	2.2		
<mark>Κ_sφ</mark>	1.2 ± 0.5	0.4 ± 0.4	0.0 ± 2.2	3.3 ± 1.7	1.7 ± 0.1	0.7		
K _s ω	14.2 ± 3.8	7.8 ± 1.9	12.0 ± 2.8	1.0 ± 2.1	2.3 ± 0.2	0.4		
K _s ω	14.2 ± 3.8	7.8 ± 1.9	12.0 ± 2.8	1.0 ± 2.1	2.3 ± 0.2	0.4		

• $K_s \pi$ and KK modes provide the statistical power.

Page 10

Fit Strategy

• Trying to extract A_{\pm} and R_{\pm}

$$\mathcal{A}_{\pm} = \frac{\Gamma(B^- \to D^0_{CP\pm}K^{*-}) - \Gamma(B^+ \to D^0_{CP\pm}K^{*+})}{\Gamma(B^- \to D^0_{CP\pm}K^{*-}) + \Gamma(B^+ \to D^0_{CP\pm}K^{*+})} = \frac{\pm 2r_B \sin \delta \sin \gamma}{1 \pm 2r_B \cos \delta \cos \gamma + r_B^2}$$

 $\mathcal{R}_{\pm} = \frac{\Gamma(B^- \to D^0_{CP\pm}K^{*-}) + \Gamma(B^+ \to D^0_{CP\pm}K^{*+})}{\Gamma(B^- \to D^0K^{*-})} = 1 \pm 2r_B \cos\delta\cos\gamma + r_B^2$

- Overview: Fit m_{ES} in (Data)
 - Sidebands of ΔE to fix Argus parameter.
 - Sidebands of the D⁰ mass
 to get peaking background.
- Split dataset based on charge.

- Fit $N_+ N_-$

Page 11

The Future

- Fit studies to date show that statistics are too low
- Intention is to include with the $K^*(K_s\pi)$ events.
 - Non-res phase under study.
 - Hopefully assign a systematic.
- My thesis will present a combined fit.

Conclusions

- Direct measurement of γ is important!
- Statistics starved.
 - Best measurements to date limited by stats.
 - These modes lack statistics with current dataset.
 - Combine with other K* decay to add $\sim 40\%$
 - will hopefully improve overall measurement.
 - Studies ongoing.

Spare slides follow...

Page 14