

EUChinaGRID project

Federico Ruggieri INFN – Sezione di Roma3

EGEE04 - External Projects Integration Session

Pisa 25 October 2005

Why GRID & China

- China is one of the fastest growing economies in the world with a specific program for GRID (CNGRID).
- Many Scientific collaborations are already active between European and Chinese Researchers (LHC, Astroparticle, Biology, etc.)
- EGEE GRID Middleware can be seen as a sort of common platform which can be the baseline for interconnecting GRIDs worldwide.

EUChinaGRID: Interoperability and Integration of Grids between Europe and China

- EUChinaGRID will make a step forward supporting the creation a pilot intercontinental Grid infrastructure which will:
 - strengthen the existing scientific collaborations (LHC, ARGO-YBJ, NBP).
 - promote new collaborations in eScience between Europe and China.
- To reach this objective several activities are planned:
 - Support of network interoperability (IPV4/IPV6)
 - Interoperability of services between CNGRID and EGEE
 - dissemination & training.

Participants

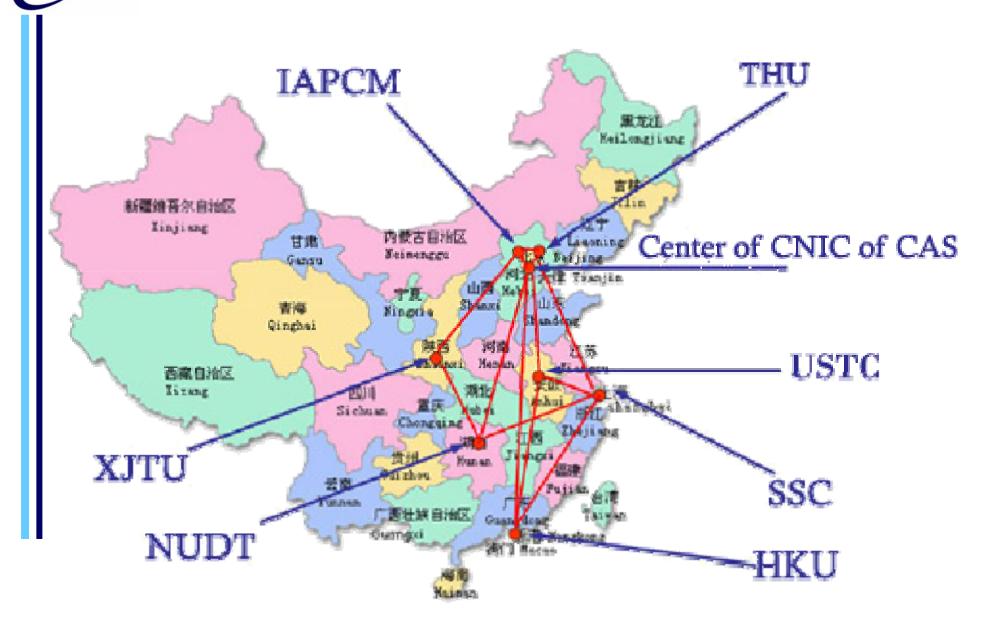
1	Istituto Nazionale di Fisica Nucleare (IT) (coordinator)
2	European Organisation for Nuclear Research CERN (CH)
3	Dipartimento di Biologia - Università di Roma Tre (IT)
4	Consortium GARR (IT)
5	Greek Research & Technology Network (GR)
6	Jagiellonian University – Medical College, Cracow (PL)
7	School of Computer Science and Engineering – Beihang University Beijing (CN)
8	Computer Network Information Center, Chinese Academy of Sciences – Beijing (CN)
9	Institute of High Energy Physics, Beijing (CN)
10	Peking University – Beijing (CN)

Status, Timescale & Budget

- Negotiation phase ended.
- Contract will be signed in november '05.
- 24 Months duration starting on 1st January '06.
- EU Contribution of 1,300,000 €
- A total of 495 Person Months (325 Funded).

EUChinaGRID WP's

- WP1 Management
- WP2 Network provisioning
- WP3 Pilot infrastructure
- WP4 Applications
 - EGEE applications (LHC, Bio, etc.)
 - ARGO-YBJ and Gamma Ray Bursts
 - Never Born Proteins
- WP5 Dissemination and Training



General schetch

- Middleware: EGEE middleware will be used with Chinese specific additions and modifications.
- Infrastructure: the EGEE and CNGRID infrastructures will be used.
- Applications: EGEE applications (LHC) and other pilot applications will be supported.
- Training & Dissemination: Joint activities with other projects are foreseen (Grid@Asia, BELIEF, etc.) with possible synergies.

CNGRID

ARGO – YBJ Laboratory

Unique High Altitude Cosmic Ray Laboratory (4300 m a.s.l., Tibet, P.R. China), 90 km North to Lhasa.

Chinese-Italian collaboration.

The Experiment data rate to be transferred is 250 TB/Year requiring a steady transfer rate of the order of 100 Mbps to Beijing and from there to Italy.

Never Born Proteins

- The number of natural proteins on Earth, although apparently large, is only a tiny fraction of the possible ones:
 - with 20 different co-monomers (the 20 different natural amino-acids), a polypeptide chain with 60 residues (n=60) can exist in 20⁶⁰ different chain structures.
 - In nature, we have around 10¹³⁻¹⁴ different proteins, so that the ratio between the possible and the actual number is staggeringly large.
- This means that there is an astronomically large number of proteins that have never been seen on Earth an incredibly large number of "never born proteins" (NBP).
- In particular, the present research in the field is based on a computational approach to study a large library of NBP (10⁹ protein sequences) to the aim of clarifying the structural principles that characterize them and of selecting a reasonable number of sequences which can potentially give rise to stably folded proteins.