Present and future of B-Factories

<u>Riccardo Faccini</u>

University "La Sapienza" and INFN Roma IFAE Catania - 1/4/2005

- ~600fb⁻¹ accumulated by BaBar+Belle
- BaBar short of ~100fb-1 due to security accident
- Plan to have ~500fb⁻¹/exp by Summer 2006
- Future scenarios
 - BaBar running till 2008 (1ab-1 accumulated)
 - Belle planning to upgrade machine with 1-2 years stop : 2-3 ab⁻¹/year starting 2010
 - "sudden SuperBF" (10³⁶)? Where? (not SLAC)

Primers

Time dependent CP "Recoil Physics"

A COL

CP violation in mixing and decay $t=0$ B^{0} A_{f} f f A_{f} f f $G^{(-)}(f) \rightarrow f) \sim f$ $Consider B decays to a \mod f f f f f f f f f f $					sarily te $h(\Delta Mt)$
$\lambda = \frac{A(\overline{B} \to f)V_{td}^*V_{tb}}{A(B \to f)V_{td}V_{tb}^*} \cong \frac{\overline{A}}{A} e^{-i2\beta}$ Mixing phase Examples:					
		f	$A r g \left(\frac{\overline{A}}{A}\right)$	λ	output
	mixing	$B_0 \rightarrow I_V X, D^{(*)}\pi, \rho, a_1$	0	~0	ΔM_d
	["] sin2β"	$B_0 \rightarrow J/\Psi K^0 + \phi K^0$	0	1	sin2β
	"sin2α"	Β ₀ →ππ,ρρ,πππ	~(-2γ)	~1	sin2 α
	sin(2 β+γ)	$B_0 \rightarrow D^{(*)} \pi^-$	~(-γ)	~0.02	$sin(2\beta+\gamma)$

Physics on the recoil

The high luminosity and the high number of fully reconstructed B's opens a brand new world in B physics.

Fully reconstruct one of the Bs and study the remaining of the event \rightarrow close kinematics, missing energy reconstruction

 $\overline{B^{0}} \rightarrow D^{*+}\pi^{-} B^{0} \rightarrow \psi(2S)K^{0}_{s}$ $Semileptonic D^{(*)}|(n\pi) \int \int f^{(*)} f^{(*)$

$sin2\beta$ from charmoniumK⁰_s

Penguins and new physics Golden-tree and penguin modes: Tree: đ d In SM: $\lambda_{J/\psi Ks} = \lambda_{\phi Ks} \begin{cases} S_{J/\psi Ks} = S_{\phi Ks} = sin2\beta \\ C_{I/\psi Ks} = C_{AKs} = 0 \end{cases}$ **Penguin:** $V_{tb}^*V_{ts}$ $\lambda_{\phi Ks} = + \left(\frac{q}{p}\right)_{\rm D} \left(\frac{V_{tb}V_{ts}^*}{V_{ts}^*V_{ts}}\right) \left(\frac{p}{q}\right)_{\rm D} \approx -e^{-2i\beta}$ -5 -5 In general case of New Physics: $\lambda_{J/\psi Ks} \neq \lambda_{\phi Ks} \begin{cases} S_{J/\psi Ks} \neq S_{\phi Ks} \\ C_{V/\psi Ks} \neq C_{\phi Ks} \end{cases}$ W + New Physics?

Measurements of α

α

A.C.

Better than ever dreamt of

Measuring $\alpha: B \rightarrow \pi^+\pi^-$

 π^+

 π

 $|V_{td}|e^{i\beta}$

|V_{ub}|e^{iγ}

Tree is promising because

$$\frac{T}{\overline{T}} = \frac{V_{ub}^*}{V_{ub}} = e^{-2i\gamma}$$

... but penguin has a different phase

$$\pi^{+}$$

$$\pi \lambda = e^{-2i\beta} \frac{\overline{T} + \overline{P}}{T + P} = e^{-2i\alpha} \frac{1 + \frac{P}{T}}{1 + \frac{\overline{P}}{\overline{T}}} = re^{-i(2\alpha + K_{\pi\pi})}$$

YES (large $K\pi$ Branching Fraction)

Is P large?

Isospin analysis

Two relationships in the complex plane :

$$\frac{1}{\sqrt{2}}A(B^{0} \to \pi^{+}\pi^{-}) + A(B^{0} \to \pi^{0}\pi^{0}) = A(B^{+} \to \pi^{+}\pi^{0})$$
$$\frac{1}{\sqrt{2}}A(\overline{B}^{0} \to \pi^{+}\pi^{-}) + A(\overline{B}^{0} \to \pi^{0}\pi^{0}) = A(B^{-} \to \pi^{-}\pi^{0})$$

sin2 α from $\pi\pi$

Good News : BaBar and Belle agree better

α from B $\rightarrow \pi \pi \pi^0$

Bad News: same diagrams as $B \rightarrow \pi\pi$, measure α with penguin pollution

Good News: strong phase different in each point of the Dalitz plot allows extraction of penguin and therefore α

$B \rightarrow pp$: measuring α

Same diagrams as ππ BUT 4-body (ρ→ππ) final states with two vector intermediate states
> 4-body amplitude analysis

 replaced by quasi-two-body approach
 Interferences and higher resonances studied in detail and found to be negligible

> Angular and time dependent analysis

 $f_L(\rho^+\rho^-) = 0.978 \pm 0.014^{+0.020}_{-0.028}$

Isospin analysis to get α
 Neglect I=1 amplitude and isospin breaking

 D° K : results

Probability density

Measured values of r much smaller than predicted

Further developments of Dalitz analysis

- Extend to more modes
 - $\pi\pi\pi^0$ (Cabibbo suppressed), K_s $\pi\pi\pi^0$
- Apply a method independent of the Dalitz structure (irreducible error)
 - Interactions with CLEO-c (D^o CP sample) starting
- Asymptotically seems to be the most promising method for long term

First attempt : utilize $B \rightarrow D_s \pi$ which is the SU(3) conjugate

$$r_{(*)} \approx \sqrt{\frac{Br(B^0 \to D_s^{(*)+} \pi^-)}{Br(B^0 \to D^{(*)-} \pi^+)}} \left| \frac{V_{cd}}{V_{cs}} \right| \frac{f_{D^{(*)}}}{f_{D_s^{(*)}}}$$

Note: $\text{D}\pi, \rho$ measurements already presented

 $r(D\pi) = 0.019 \pm 0.004$ $r(D^*\pi) = 0.015^{+0.004}_{-0.006}$ $r(D\rho) = 0.003 \pm 0.006$

UNDER DISCUSSION

 SU(3) symmetry may not hold
 Annihilations/W-exchange diagrams are neglected

Measurement of r casts a shadow to this measurement

- looking for model independent solutions
 - side measurements to estimate annihilations/SU(3) breaking
- D⁰K⁰ more promising mode (r~0.4 can be measured, although OPE based studies show r=0.26±0.16) http://ckm2005.ucsd.edu/WG/WG5/thu2/Sordini-WG5-S3.pdf

Measurements of V_{cb} & V_{ub}

Vub

 V_{cb}

Including $b \rightarrow s\gamma$ studies and search for $B \rightarrow \tau v$

A C

- Moments of $m_{\rm X}$ and $E_{\rm I}$ give sensitivity to b,c quark masses, $V_{\rm cb}$ and other theory parameters
- BaBar published Vcb with a 1.8%
 error ~1 year ago
- Belle's data now available (prelim.)

 $V_{cb} = (4.144 \pm 0.043) \cdot 10^{-10}$

Exclusive $B \rightarrow X_u lv$ decays

- Reconstruct $X_u = \pi, \rho, ...$ and estimate neutrino momentum with missing momentum. Several techniques:
 - Untagged : no requests on recoil → high efficiency, large background
 - Tagged measurements: hadronic or semileptonic
 better S/B, lower statistics
- New theoretical progress: measure BF in q²=m_{Iv} bins → sensitive to Form Factors

Exclusive V_{ub} Results

Inclusive $b \rightarrow u lv$

- BR(b→ulv) ⇔ Vub is an 'easy' conversion (~5% error)
- Background rejection requires cuts. Extrapolation to full rate was the real challenge so far. We need the <u>differential rate (in terms of</u> P_X, P_W, P_I) as input to MC simulation
- Theoretical errors can be reduced
 - by measuring as many theory parameters as possible in samples as close as possible to $b \rightarrow ulv$.
 - By reducing the dependence of the analysis on the theory

Largest uncertainty on V_{ub} comes from b motion inside B meson → b→sγ allows to measure it:
 Look inclusively for a high energy monochromatic photon and measure the energy in the B meson rest frame

VERY recent developments

- Several new b→ulv results with new discriminating variables
 - BaBar: $m_X Q^2, Q^2 E_1, E_1$,
 - Belle: m_X -Q²,P⁺,E₁
- Two new $b \rightarrow s\gamma$ photon energy spectra
 - fully inclusive
 - Sum of exclusive final states
- Lot's of ongoing developments/discussion
- Weak annihilations under study

$B \rightarrow \tau v$

Purely leptonic B decay. Standard Model branching ratio $BR(B \rightarrow \ell \nu) = \frac{G_F^2 |V_{ub}|^2}{8\pi} f_B^2 \cdot \tau_B \cdot m_B \cdot m_\ell^2 \cdot \left[1 - \frac{m_\ell^2}{m_B^2}\right]^2$

Provide direct measurement of B meson decay constant $fB = 0.196 \pm 0.032$ GeV (PDG 2004, Lattice QCD)

- Probe with $b \rightarrow s \gamma^{(*)}$ processes
- Lepton flavour violation
 - τ**→**μγ

Recent observations of new mesons

- Towards a new spectroscopy ?
- New studies on the X(3872) state

Lepton Flavour Violation Search in $\tau^{\pm}{\rightarrow}\mu^{\pm}\gamma$

- BaBar/Belle are also τ factories. $\sigma_{\tau\tau}$ = 0.89 ± 0.02 nb.
- Lepton Flavour Violation
 - Some supersymmetric models predict rates for $\tau^{\pm} \rightarrow \mu^{\pm} \gamma ~ \sim 10^{-6}$
 - ...but rates from most Standard Model (SM) extensions are much lower.
 - Any observation of this mode would indicate new physics.
- Search for $\tau^+\tau^-$ decays with:
 - non-SM decay of τ with isolated μ and γ with invariant mass of τ in one hemisphere and τ
 - SM decay of other τ to 1 or 3 charged pions.

Towards a new spectroscopy(?)

Recent observations of new states (DsJ, X(3872),Y(3940)...) several models have been developed

- We are at a stage where we can start to discriminate among them
- e.g molecular model predicts highly suppressed $B^0 \rightarrow X(3872)K_s$

4-quark model predicts different masses between X(3872) in B⁰ and B⁺ decays $|\Delta M| > 5$ MeV

L. Maiani, F. Piccinini. A.D. Polosa, V. Riquer PRD 71 (2005) 014028

Search for $B^0 \rightarrow X(3872)K_c$

+Br(X \rightarrow J/ $\psi\pi\pi$) > 4% @ 90% C.L (from B \rightarrow XK study)

Y(3940)

- New state observed by Belle last summer
 - DD decays favored (why then narrow?
 4-quarks?)

Expectations in 2008 (L_{Belle+BaBar}~2ab⁻¹)

- 1. Measurements of β
 - NP discovery potentialities depend on
 - Central value
 - Theoretical errors
 - If everything stays as is ~6σ in 2008
- 2. Measurements of α
 - Biggest uncertainty: BF(B→ρ⁰ρ⁰)
 - $\sigma(\alpha) \sim 4^{\circ}$ in 2008
- 3. Measurements of γ
 - Biggest uncertainty: error on Dalitz/ Model independent
 - σ(γ)~7° in 2008

By 2008 all three angles will have precision measurements