

Cosa ci possono dire le misure di precisione

La dipendenza da m_{H} puo' manifestarsi da correzioni radiative.

Da misure di precisione:

- indicazioni sul parametro mancante m_H
 test di validita' dello Standard Model

Cosa ci aspettiamo ad LHC?

Massa del W

A LEP il "golden channel" era WW->lvqq. V Ma a LHC la sezione d'urto per questo processo e' bassa (12 pb) e i fondi molto piu' grandi. W singolo in lv: non e' possibile una misura diretta di m_W perche' il neutrino non e' ricostruito, ma la statistica e W beam line e' enorme (3×10^4 pb). $m_W^T = \sqrt{2p_l^T p_v^T (1 - \cos \Delta \phi)}$ U Events/1 GeV $\vec{p}_{v}^{T} = -\left(\vec{p}_{l}^{T} + \vec{u}\right)$ ATLAS fast simulation 35000 (missing p^{T}) 30000 particle level Efficienza di selezione: ~25% con 25000 •p_T>25 GeV •E_Tmiss>30 GeV 20000 •Nessun jet con $p_T > 30 \text{ GeV}$ regione di •Rinculo: |u|<20 GeV 15000 detector smearing 10000 La statistica (dopo selezione) e' 50 volte quella di Tevatron 5000 \Rightarrow <2MeV/y per esp. di incertezza statistica (e per quanto concerne i sistematici?) 0 40 60 80 100 120 140 20 W transverse mass (GeV)

Sistematici dalla fisica

Modellizzazione dell'emissione di gluoni soffici \otimes risposta del detector. \Rightarrow usare per quanto possibile i dati stessi per calibrazioni in-situ.

 $p_T(W)$ ⇒ usare $p_T(Z)$ da Z→ $\ell\ell$, e riscalare $p_T(W)$ a $p_T(Z)$ nei modelli MC. ~5 MeV/y per esp. per leptone

Incertezze sulle PDF

 \Rightarrow Confronto di diversi modelli, usare dati da Z e W

Incertezze per esperimento per anno e per leptone Fonte d'errore **CDF Run Ib ATLAS** 60M eventi, 30k eventi, Il principale miglioramento; 84 pb⁻¹ 10 fb⁻¹ l'errore statistico diventa trascurabile 65 MeV < 2 MeVStatistico 15 MeV Lepton scale 75 MeV Risol. E,p 25 MeV 5 MeV Calibrazione interna, Recoil model 33 MeV 5 MeV soprattutto da misure con le Z. Largh. W 7 MeV 10 MeV PDF 15 MeV 10 MeV Dec. radiativi 20 MeV < 10 MeV $P_t(W)$ 45 MeV 5 MeV Realistico, anche se non 5 MeV Fondi 5 MeV facile. L'errore combinato 25 MeV da LHC (tenendo conto TOTALE **113 MeV** delle correlazioni) sarebbe cosi' di ~15 MeV.

Quali eventi usare per sondare le PDF:

Processo:	Limiti sulle PDF di:
Di-jets	Quark e gluoni
Jet + fotone	Quark e gluoni
Jet + W/Z	Quark e gluoni
WeZ	Quark
Drell-Yan	Quark

- le distribuzioni di p_T e rapidita' dipendono fortemente dalle PDF
- il rapporto tra le sezioni d'urto W^+/W^- e' una misura indiretta di u(x)/d(x)

Esempio: con soli 0.1 fb⁻¹, ovvero 2·10⁶ W→µv prodotte

Sensibile a piccole differenze nella distribuzione di sea-quarks

Sonda per le PDF, test di QCD ad altissima energia, fondo per nuova fisica (risonanze pesanti che decadono in di-jet).

Per 300 fb⁻¹:

E _T of jet	Events
> 1 TeV	4.10 ⁶
> 2 TeV	3·10 ⁴
> 3 TeV	400

Possibile arrivare a energie molto elevate...

Coppie di leptoni Drell-Yan

In linea di principio da questo processo si puo' misurare l'angolo di Weinberg. A_{FB} attorno al picco della Z

• grande sezione d'urto a LHC:

 $\sigma(Z \rightarrow e^+e^-) \approx 1.5 \text{ nb}$

• errore statistico con 100 fb⁻¹:

$\Delta \sin^2 \vartheta_{\rm W} \approx 0.00014$

(Ma grandi errori sistematici - ancora da valutare ma probabilmente dominanti sullo statistico - da PDF, accettanza dei leptoni, corr. radiative.) **Fit simultaneo per estrarre PDF e angolo di Weinberg?**

Per misurare un'asimmetria avanti-indietro occorre definire la direzione "in avanti". In un collider pp e' meno ovvio che a Tevatron. Soluzione: i sea-(anti)quarks hanno impulso medio minore dei quark di valenza, quindi y(ll) dara' una misura della direzione del quark. A_{FB} dipendera' da y, e sara' massimo in avanti (occorrera' una buona lepton id a piccolo angolo)

Produzione di di-bosoni

Da' una misura degli accoppiamenti di gauge tripli (TGC) e un test degli auto-accoppiamenti dei bosoni di gauge.

> I vertici WWγ e WWZ fanno parte del Modello Standard

La sensibilita' agli accoppiamenti anomali viene dalla parte alta dello spettro in P_t dei due bosoni:

1400 Pt(y) GeV

BOD

800

40C

1000

12D0

17

Spettro in P_t del fotone:

Produzione di tri-bosoni

Misura gli accoppiamenti quartici (QGC)

Events for 100 fb ⁻¹	Produced	Selected
(m _H = 200 GeV)	(no cuts,no BR)	(leptons, p_T >20 GeV, $ \eta < 3$)
$pp \rightarrow WWW (3 v's)$	31925	180
$pp \rightarrow WWZ$ (2 v's)	20915	32
$pp \to ZZW$	6378	2.7
$pp \rightarrow ZZZ$	4883	0.6
$pp \rightarrow W\gamma\gamma$	best channel for analysis	

30 eventi Wyy in 30 fb⁻¹

- Nonostante sia una "macchina da scoperte", LHC puo' permettere parecchia fisica di precisione, grazie all'altissima luminosita' e alle sezioni d'urto molto alte di alcuni processi elettrodeboli alle sue energie.
- Il vantaggio in termini di statistica e' pero' compensato dai sistematici, sia strumentali che da fisica.
- Il principale sistematico dalla fisica e' l'incertezza con cui sono conosciute le PDF.
- Le migliori "sonde" con cui cercare di conoscere meglio le PDF proverranno proprio dalla "zoologia" della fisica elettrodebole: W, Z, γ , Drell-Yan,...
- Allo stesso modo, le risonanze del Modello Standard fungeranno da "candele standard" per le calibrazioni, aiutando a ridurre anche i sistematici strumentali.

Trasparenze di backup

$$\frac{d\sigma}{dE_{T}} \sim \alpha_{s}^{2}(\mu_{R})A(E_{T}) + \alpha_{s}^{3}(\mu_{R})B(E_{T})$$

Massa del W: Tevatron/LHC

_	Run IA		Incortozzo por ocnorimonto
Source	Δm_W (CDF)	Δm_W (ATLAS)	per anno e per leptone
Statistics	145 MeV	< 2 MeV	Il principale miglioramento:
<i>E-p</i> scale	120 MeV	15 MeV	l'errore statistico diventa
Energy resolution	80 MeV	5 MeV	trascurabile
Lepton identification	25 MeV	5 MeV	N
Recoil model	60 MeV	5 MeV	Calibrazione interna,
W width	20 MeV	7 MeV	/ soprattutto da misure con Z.
Parton distribution functions	50 MeV	10 MeV	
Radiative decays	20 MeV	< 10 MeV	
p_{T}^{W}	45 MeV	5 MeV	Realistico, anche se non facile.
Background	10 MeV	5 MeV	L'errore combinato da LHC (tenendo conto delle
TOTAL	230 MeV	25 MeV	correlazioni) sarebbe cosi' di circa 15 MeV.