Catania, 1 Aprile 2005

Roberto Tenchini INFN-Pisa

Misure di Precisione Elettrodeboli : stato attuale e prospettive per LHC

22 Anni di Fisica del W e della Z

Solo risultati pubblicati

(*) Media preliminare 2004 : σ =34 MeV, peso di LEP 2/3, Tevatron 1/3

22 Anni di Fisica del W e della Z

Solo risultati pubblicati

22 Anni di Fisica del W e della Z

Running di α QED: $\alpha(M_Z)$

Diffusione Bhabha a piccolo angolo : Evidenza del running di α e di contributo adronico

OPAL

19

SM a livello di albero non sufficiente : correzioni a un loop

- Introduzione di tre parametri addizionali: $M_{top},\,M_{higgs},\,\alpha_s$
- Scrivere un Osservabile come:

$$O_i = f_i[\alpha(M_Z), G_F, M_Z, m_{top}, M_{Higgs}, \alpha_s]$$

Esempio :

$$Mw^{2}\left(1-\frac{Mw^{2}}{Mz^{2}}\right) = \frac{\pi\alpha}{\sqrt{2}}\frac{1}{G_{F}}\left(1+\Delta r\right)$$

one loop

Sommario per oggi

- Accoppiamenti alla Z : asimmetrie e sin²(θ)_W
 - (cosi' e' se vi piace)
- Accoppiamenti al W: W Branching Ratios
 - (cosa succede al tau ?)
- Misura della massa del W
 - (qualche punto caldo)
- Limiti sulla massa dell' Higgs SM (Inverno 2005)
- LHC come Top factory
- Accoppiamenti Trilineari

Commenti per LHC Accoppiamenti Elettrodeboli : Dal deep inelastic scattering a LEP-SLC enorme aumento di precisione

Asimmetrie alla Z e $\sin^2 \theta_{eff}^{l}$

- Consistenza al 3.7%
- Differenza storica tra A_{LR} and A_{FB}(b)

Asimmetria forward-backward del b

Due tecniche sperimentali
decadimenti semileptonici del b
inclusiva basata sulla jet charge
Sistematici molto diversi
Media LEP dominata dalla statistica

	∆AFB(b)	
STATISTICS	0.00156	
UNCORRELATED SYSTEMATIC	0.00061	
QCD CORRECTION	0.00030	
LIGHT QUARK FRAGMENTATION	0.00013	
SEMILEPTONIC DECAYS MODELLING	0.00013	
CHARM FRAGMENTATION	0.00006	
BOTTOM FRAGMENTATION	0.00003	
TOTAL SYSTEMATIC ERROR	0.00073	

Asimmetria del b: risultati

Commenti sulle misure di sin²(θ)

- Risolveremo la questione A_{LR}- asimmetria del b solo coi futuri collider lineari se
 - La polarizzazione di entrambi I fasci sara' disponibile
 - Ci sara' un run alla Z ad altissima statistica
- Intanto che fare a LHC ?

Controllo importante a LHC : asimmetrie dagli eventi di Drell-Yan

- Chiara segnatura: una coppia di leptoni isolati di carica opposta
- Per misurare l'asimmetria forward-backward bisogna conoscere la direzione del quark
- Al Tevatron e' ovvia (p pbar)
- A LHC la sezione d'urto DY va studiata in funzione della massa invariante e della rapidita'.
- Siccome alta rapidita' e' una segnatura dei quark di valenza (e a LHC solo q e' di valenza) la direzione del boost da la direzione del quark

Asimmetrie dagli eventi Drell-Yan : necessario conoscere le PDF

(<u>Grandi errori sistematici</u> - ancora da valutare ma probabilmente dominanti sullo statistico - da PDF, accettanza dei leptoni, corr. radiative.) **Fit simultaneo per estrarre PDF e angolo di Weinberg?**

Risultati dalle coppie WW a LEP2

Tre diagrammi a livello di Born (diagrammi CCO3):

In realta' si rivela il decadimento successivo del W in leptone-(anti) neutrino e quark₁- (anti) quark₂.

Processo reale

$$e^+e^- \to W^+W^- \to f_1\bar{f}_2f_3\bar{f}_4 \ \ \underline{ \ \ definito \ \ da \ \ tagli \ \ sper.}$$

Sezione d'urto WW totale

Decadimenti del W : Branching Ratios

Summer 2004 - LEP Preliminary

NEW ADL FINAL

Summer 2004 - LEP Preliminary

Standard Model : 10.8%

Standard Model : 67.5%

Test dell'universalita' leptonica: risultato per il τ piu' alto di e+μ

Accoppiamenti leptonici del W

Summer 2004 - LEP Preliminary

$$\frac{g(\mu)}{g(e)} = 0.997 \pm 0.010$$
$$\frac{g(\tau)}{g(e)} = 1.034 \pm 0.015$$
$$\frac{g(\tau)}{g(\mu)} = 1.037 \pm 0.014$$

• Se si assume lo stesso accopiamento per elettroni e mu ed i due risultati sono combinati e confrontati a τ la differenza e' di 3σ

•erano 2.3σ un anno fa •sono 2.6σ se si usano solo risultati finali

LHC: si potra' fare un controllo se i sistematici di idenficazione dei tau lo permetteranno

LEP: Massa del W da ricostruzione diretta

• Al di la' della soglia WW la massa del W si misura dalla massa invariante jet-jet nei canali totalmente adronico e semileptonico

- Eventi reconstruiti in 2 (semileptonico) or 4 (adronico) jet
- Fit cinematico per migliorare i quadrimpulsi dei jet.
 Bisogna conoscere l'energia del fascio

Coppie WW a LEP

- energia nel centro di massa
 161 Gev 209 GeV
- ~700 pb⁻¹ per esperimento
- ~4500 qqqq , ~4000 lvqq per esperimento

M_w ricostruita

LEP: Incertezze sistematiche su M_W

Risultato LEP finale: Colour Reconnection misurata dai dati (o meglio modelli limitati dai dati)

 Con tecniche di questo tipo il sistematico da CR dovrebbe passare da 90 MeV a ~ 50 MeV

M_W a LEP : 4q e lvqq

80.411±0.032(stat) ±0.030(syst)GeV/c2 80.420±0.035(stat) ±0.101(syst)GeV/c2

Differenza tra I due canali (senza FSI syst) $\Delta M_W(qqqq-lvqq)=+22\pm43 \text{ MeV}$

Winter 2003 - LEP Preliminary

Winter 2003 - LEP Preliminary

Massa del W ai collider adronici: il passato e il futuro

- Prima di LEP: collider adronici (SppS, Tevatron Run I)
- Dopo LEP : collider adronici (Tevatron Run II, LHC)
- Produzione di **W singoli** da Drell-Yan (annichilazione quark-antiquark)
- Decadimento W in leptone (e or μ) + neutrino
- \bullet Fit a $M_W{}^T$, la distribuzione in massa trasversa

$$\mathbf{M}_{\mathrm{W}}^{\mathrm{T}} = \sqrt{2 p_{T}^{leptone} p_{T}^{\upsilon} (1 - \cos \varphi)}$$

Incertezze sulla massa del W al Tevatron (Run I)

	CDF e	CDF µ	DØ e			
Uncorrelated uncertainties						
W statistics	100	65	60			
Lepton scale	85	75	56			
Lepton resolution	20	25	19			
р _т (W)	20	15	15			
Recoil model	35	37	35			
Selection bias	18		12			
Backgrounds	25	5	9			
Correlated uncertainties						
PDF	15		7⊕4			
Radiative corrections	1	11 12				
Γ _w	10		10			

These errors are determined using CDF/D^Ø data,scale with luminosity Detector improvements for Run II will also help

Theory improvements Improve PDF constraints with measurements (W charge asymmetry, Z rapidity distribution)

40 MeV per experiment with 2 fb⁻¹ feasible

A LHC e' <u>necessario</u> raggiungere i 15 MeV

M_W a LEP e TeVatron

Massa dell' Higgs dai fit Elettrodeboli

Preliminary

210

190

114/

80.2

130

300/

150

1000

170

m_t [GeV]

Winter 2005

$$M_{top} = 178.0 \pm 4.3 \text{ GeV/c}^2$$
$$M_{Higgs} \le 280 \text{ GeV/c}^2$$

Risultato del fit nel piano (m_{top}, m_{higgs})

Blue band plot Winter 2005

 $M_{Higgs} = (126^{+76}_{-48}) \, \text{GeV/c}^2$

..... Ma scendera' di nuovo, vedi sotto.....

Summary

- Several new top mass measurements available in different decay channels:
 - CDF Run II preliminary results
 - DLM: most precise measurement from run II
 - CDF average
 - **176.7±7.6 GeV/c²** (private average)
 - Best Run II DØ results from I+jet channel:

170.6±7.3 GeV/c² (from 2 days ago)

- new techniques have being developed
- > Tevatron is performing very well
 - Delivered luminosity approaches 800 pb⁻¹
 - Top mass updates from the higher statistic (~ 325 pb⁻¹) will be available soon (next months)
 - A lot of work is done to the reduce systematics –especially the jet-energy scale systematic uncertainty
 - Precision will be limited by systematic uncertainties

March 4, 2005

LHC e' una top factory !

 $\sigma_{tt}(th) = 825 \pm 150 \text{ pb}$ (~100 volte Tevatron)

8 milioni di coppie ttbar in un anno a **bassa luminosita'** (1 Hz)

Fondi principali: W/Z + jets

Esempio : massa del top nel canale semileptonico

Elettron/muon + jets:

Tre vincoli — Piu' due (total pt=0)

- •Necessaria buona misura di $E_T(miss)$ per il neutrino
- •Necessario calibrare i jet
- •B-tagging importante per la selezione e abbassare il combinatorio

Jet Energy Corrections

Determine true "particle", "parton" jet E from measured jet E

Non-linear response
Uninstrumented regions
Response to different particles
Out of cone E loss
Spectator interactions
Underlying event

top mass at LHC (semilept.)

Top singolo a LHC

- Fino ad ora solo limiti superiori dal Tevatron
- Dal canale s misura precisa di |V_{tb}|
- Sensitivita' a nuova fisica: FCNC (t-ch.), nuovi bosoni di gauge...
- Dal canale t studi precisi di polarizzazione, predetta dallo SM (processo elettrodebole !)

Accoppiamenti Trilineari (TGC)

- I vertici trilineari (WWγ, WWZ) verificano la struttura non-Abeliana dello Standard Model. Limite ad accoppiamenti anomali.
- La lagrangiana piu' generale invariante di Lorentz presenta 14 costanti di accoppiamento (7 per WW γ e 7 per WWZ)
- Assumendo invarianza di gauge elettromagnetica, conservazione di C e P, relazioni SU(2)XU(1),

rimangono 3 parametri

$$\left\{g_1^z,\kappa_{\gamma},\lambda_{\gamma}\right\}$$

Momento magnetico anomalo del W

Momento di quadrupolo elettrico del W

$$\mu_{w} = \frac{e}{2m_{W}}(1+\kappa_{\gamma}+\lambda_{\gamma})$$

$$Q_w = -\frac{e}{m_W^2}(\kappa_\gamma - \lambda_\gamma)$$

Triple Gauge Couplings a LEP (e ILC)

- Gli accoppiamenti anomali influenzano gli stati di elicita' del W
- Modificano la sezione d'urto totale e le distribuzioni angolari
- Trascurando la larghezza e la radiazione di stato iniziale la produzione e il decadeimento del W sono descritti da 5 angoli

Processi utilizzati a LEP

Risultati: TGC a LEP

Accoppiamenti trilineari: macchine adroniche

Tevatron (SU(2)xU(1)) : κ_{γ} , λ_{γ} LHC : Large statistics + $\uparrow \sqrt{s} \Rightarrow g_{z'}^1 \kappa_{\gamma}$, κ_z , λ_{γ} , λ_z

Couplings a LHC

Couplings a LHC: incertezza prevista

Errore sistematico dominante: calcoli QCD solo a NLO

Total Error avec L=300 fb⁻¹ (ATLAS+CMS) • $g_z^1 : \sim 0,015$ • $\lambda_\gamma : \sim 0,003$ • $\lambda_z : \sim 0,007$ • $\kappa_\gamma : \sim 0,08$ • $\kappa_7 : \sim 0,18$

Prospettive a Futuri Colliders

Conclusioni (1)

- LEP-SLD: Le asimmetrie alla Z sono finali (inclusi i quark)
- Compito per LHC : misurare le asimmetrie dai DY
- •Sezioni d'urto W a LEP sostanzialmente finali
- ·La misura della massa del W a LEP e' ancora PRELIMINARE

 L'incertezza dovuta agli effetti di Coulor Reconnection sara' ridotta e si sfruttera' meglio il canale a 4q

•<u>Fit Elettrodeboli: nonostante tutto c'e' ancora evidenza per un</u> <u>Higgs leggero</u>

Conclusions (2)

- TGC's misurati a LEP con precisione ~ 1% , chiara evidenza dell'esistenza di accoppiamenti trilineari
- •i TGC saranno misurato con precisione crescente a LHC, ma la vera macchina per i TGC e' il Linear Collider
- Con una sezione d'urto ttbar di 800 pb e single top di 320 pb LHC sara' una <u>top factory</u>

Backup Slides

TGC 2D results

$$-\Delta \ln(L) = 0.5$$

$$g_1^Z = 1.024^{+0.029}_{-0.029}$$
$$\lambda_{\gamma} = -0.036^{+0.029}_{-0.029}$$
$$g_1^Z = 1.004^{+0.024}_{-0.025}$$
$$\kappa_{\gamma} = 0.984^{+0.049}_{-0.049}$$

$$\begin{aligned} \lambda_{\gamma} &= -0.024^{+0.025}_{-0.021} \\ \kappa_{\gamma} &= 1.026^{+0.048}_{-0.051} \end{aligned}$$

3D results available as well

CP violating couplings

183-207 GeV Data (684.0 pb⁻¹)

 Measurement of all CPviolating trilinear couplings separately.

expectations

- Analysis done with WW pairs (183 → 207 GeV) -ALEPH data only.
- For CP-conserving couplings, see

ALEPH 2003-035

Alternative approach : spin density method

Winter 2004					
	Measurement	Fit	$ O^{meas} - O^{fit} / \sigma^{meas}$ 0 1 2 3		
$\Delta \alpha_{\rm had}^{(5)}({\rm m_Z})$	0.02761 ± 0.00036	0.02768			
m _z [GeV]	91.1875 ± 0.0021	91.1873	•		
Г _z [GeV]	$\bf 2.4952 \pm 0.0023$	2.4965			
σ _{had} [nb]	$\textbf{41.540} \pm \textbf{0.037}$	41.481			
R _I	$\textbf{20.767} \pm \textbf{0.025}$	20.739			
A ^{0,1}	0.01714 ± 0.00095	0.01642			
$A_{ }(P_{\tau})$	0.1465 ± 0.0032	0.1480	-		
R _b	0.21638 ± 0.00066	0.21566			
R	0.1720 ± 0.0030	0.1723	•		
A ^{0,b}	0.0997 ± 0.0016	0.1037			
A ^{0,c}	0.0706 ± 0.0035	0.0742			
A _b	$\textbf{0.925} \pm \textbf{0.020}$	0.935	-		
A _c	$\textbf{0.670} \pm \textbf{0.026}$	0.668			
A _I (SLD)	0.1513 ± 0.0021	0.1480			
$\sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.2314			
m _w [GeV]	80.425 ± 0.034	80.398			
Г _w [GeV]	$\textbf{2.133} \pm \textbf{0.069}$	2.094			
m _t [GeV]	$\textbf{178.0} \pm \textbf{4.3}$	178.1			
			0 1 2 3		

Energia del fascio a LEP2

Conservazione energia-impulso imposta nel fit cinematico \Rightarrow

 $\frac{\delta M_W}{M_W} \approx \frac{\delta E_{Beam}}{E_{Beam}}$

FINALE

Depolarizazione risonate:

– Funziona solo fino a 60GeV \Rightarrow estrapolazione

• A LEP2:

- δE_{beam}~20MeV (δE/E~10⁻⁴) ⇒

 $\delta m_W \sim 17 MeV$

 Errore dominato dall'estrapolazione.

Present LEP result: Colour Reconnection constrained by the particle flow analysis

• Measurement sensitive only to extreme scenarios,

> Colour Reconnection Systematic error ~ 90 MeV

TeVatron RUN II W and Z cross sections

Massa del top : risultati preliminari dal Run II

Incertezza sui jet da CDF

TGCs : Diboson production at Tevatron

Limited to leptonic decays, backgrounds in W/Z+jets too large

