

Risultati del Run II del Tevatron

OUTLINE

IFAE: Incontri di Fisica delle Alte Energie 31 Marzo 2005 Catania, Italia Franco Bedeschi INFN-Pisa

Tevatron/CDF/D0
Risultati principali da CDF & D0
Preferenza ai risultati piu' recenti

New Main Injector:
 Improve p-bar production
 Recycler ring:
 Improve p-par accumulation
 IFAE - Catania: 31 Marzo 2005

 E_{CM} : 1.8 TeV → 1.96 TeV Δt_{bunch} :3.5 µs \rightarrow 396 ns Tevatron Main Injector

F. Bedeschi, INFN-Pisa

2/36

IFAE - Catania: 31 Marzo 2005

Tevatron Physics

Access to all aspects of SM

- > Jets
- charm/beauty/top
- Vector bosons

Sensitivity to new physics

- Higgs
- > SUSY
- Anything else ?

 Large extra dimensions, Leptoquarks, Technicolor, etc.

- NP covered by large backgrounds
 - Need very good understanding of more frequent phenomena

The job: Verify QCD predictions beyond LO Improve modeling of backgrounds for rare processes Discrepancies could be a sign of new physics Constrain gluon pdf's at large x (see talk A. Messina in parallel session)

6/36

Inclusive Jet Et

Results with 177 pb⁻¹ of data

- Consistent with NLO pQCD with CTEQ6.1
 - No obvious high Et excess

Energy scale uncertainty $\sim 3\%$ - Major systematics

> Picture unchanged with Kt and mid-point clustering

8/36

 \rightarrow Masses

Jet Correlations

• $\Delta \phi$ jet correlations:

- New D0 result
- Consistent with NLO QCD
 - Except near π where resummation is needed
- Herwig describes data well
 - Pythia needs tuning of ISR

IFAE ·

B physics

***** The job:

- Measure production x-section and correlations
- ▶ Improve spectroscopy, e.g. Bc, X(3872), B**,...
- Measure lifetimes of all b-hadrons
- \succ Search for rare decays, e.g. $B \rightarrow \mu \mu$
- Measure Bs mixing (indirect/direct)
- Measure CP violation parameters
- (Details in talks by S. De Cecco and M. Casarsa in parallel sessions this afternoon)
- (This topics covered in Marta Calvi's plenary talk tomorrow)

Di-muons

11/36

Very efficient di-muon triggers span wide range of invariant mass

- \blacktriangleright Exclusive B decays with J/ ψ
- Rare B decays
- $\succ \Psi$, Y are important calibration samples for momentum scale

b-hadron x-section

Consistent with Theory!

- Data: σ = 29.6 μb,
- FONLL: σ = 27.5 μb (CTEQ6M, m_b = 4:75, μ = μ₀)

B-jet cross section

Need b-jets to go to high pt
 New results from CDF test resummation of log(p_t/m) terms

IFAE - Catania: 31 Marzo 2005

Rare decays

Bs Mixing

Important constraint to CKM

- Indirect measurement with $\Delta\Gamma_s/\Gamma_s$ (see talk tomorrow M. Calvi)
 - First <u>measurement</u> out last summer (CDF)
 - Recent update (D0)
- Major progress this year on direct measurement
- ♦ First limits on Δm, obtained!!!
- Positive measurement hard but feasible

CDF: Bs mixing (signals) $\rightarrow \frac{hadronic peaks}{semi peaks}$

***** Hadronic analysis: $Bs \rightarrow Ds\pi$

- \geq ~ 900 events
 - Only CDF! Need secondary vertex trigger
 - Cross-check with hadronic lifetime analysis (independent group)

Semi-leptonic analysis: Bs Dslv

 \geq ~ 7.5k events

Cross-check with parallel independent analysis

Channel	Yield	S/B
Bs \rightarrow Ds π (Ds \rightarrow $\phi\pi$)	526±33	1.80
Bs→Dsπ (Ds→K*K)	254±21	1.69
Bs \rightarrow Ds π (Ds \rightarrow 3 π)	116±18	1.01
Bs \rightarrow Dslv (Ds \rightarrow $\phi\pi$)	4355±94	3.12
Bs→Dslv (Ds→K*K)	1750±83	0.42
Bs \rightarrow Dslv (Ds \rightarrow 3 π)	1573±88	0.32
AF - Catania: 31 Marzo 2005		

16/36

Flavor tagging

Opposite side techniques (OST):

 Calibrate dilution with high statistics Bu/Bd samples

	CDF had	CDF semi	D0 semi
Tagger	D %	D %	D %
OST µ	0.46	0.50	1.07
OST e	0.18	0.28	
OST jet Q	0.49	0.61	
Total OST	1.12±0.18	1.43±0.09	1.07

Same side techniques (SST):

- Potentially very powerful
 - Not used yet for Bs
 - Expect ~ 3% for Bs from MC

IFAE - Catania: 31 Marzo 2005

IFAE - Catania: 31 Marzo 2005

20/36

∆m_s [ps⁻

Mixing Improvements

Include Same Side (Kaon) Tagging

- Expect twice tagging power than OST combined
- x3 statistical power! ... but systematics limited in setting a limit

Improve accuracy of primary vertex

- \succ 20% on σ(ct) →
- +40% on ϵD^2 @ $\Delta m_s = 10 \text{ ps}^{-1}$
- Add more channels +30%
 - > Bs \rightarrow Ds 3π
 - → Bs→Ds*π, Bs→Dsρ⁺
- ★ x4 statistical power feasible with same data set → x2 on amplitude error
 - Sensitivity ~ 15-16 directly from data extrapolation
- More statistics next year

IFAE - Catania: 31 Marzo 2005

Electroweak results

The job:

- Measure M_{top} and M_W to high accuracy
- Measure top and W cross sections and other properties
 - **D**0: <u>dσ(Z)/dy</u>
- Measure single top production
- (Talks by S. Leone and P. Azzi in parallel sessions)

$\begin{array}{c} \begin{array}{c} & & & \\ & &$

F. Bedeschi, INFN-Pisa

IFAE - Catania: 31 Marzo 2005

Run II: $M_W = xx.xxx \pm 0.076$ GeV (to be blessed) Run I : $M_W = 80.433 \pm 0.079$ GeV

IFAE - Catania: 31 Marzo 2005

W mass systematics

Systematic	Electrons (Run 1b)	Muons (Run 1b)
Lepton Energy Scale and Resolution	70 (80)	30 (87)
Recoil Scale and Resolution	50 (37)	50 (35)
Backgrounds	20 (5)	20 (25) CDF RUN II
Statistics	45 (65)	50 (100) PRELIMINARY
Production and Decay Model	30 (30)	30 (30)
Total	105 (110)	85 (140)

Work in progress on recoil model
 Work in progress on e-energy scale (passive material)
 Now combined error is 76 MeV (stat+syst)
 Expect 50 MeV combined (CDF only) this year
 Goal is ~ 20 - 30 MeV/experiment by end of run II

W/Z cross sections

Some updates this year from CDF and D0

- Excellent agreement with full NNLO calculation
- Error now dominated by luminosity uncertainty

IFAE - Catania: 31 Marzo 2005

Top pair Cross sections

Top mass summary

Run 1

Expect major error reduction by next round of conferences

- Systematics still dominated by jet energy scale uncertainty → now improved by ~ 2 (!)
- Most analyses will double their statistics
- Goal is 2 3 GeV/exp. by end of Run II

IFAE - Catania: 31 Marzo 2005

Run 2

Jet energy scale ⁻ractional systematic uncertainty **Run II**. 20 Major energy scale 0.05 improvement by CDF New Run II Old Run I > Will impact all top mass 0.05 measurements **CDF 2005** > Start using W mass to 20 120 140 160 constrain energy scale 100 Corrected jet P_T (GeV) CDF Run 2 preliminary - L=333 pb \triangleright Progress in using Z \rightarrow bb for Selected events Background Z signal: 3394 ± 515 events b-jet energy scale Fit result > 8000 Not used yet for top mass, but ŝ shows consistency <u>a</u> 6000 Events 4000 2000

0

50

100

150

200 Dijet invariant mass (GeV)

IFAE - Catania: 31 Marzo 2005

Top mass updates

CDF upcoming updates with 318 pb⁻¹:

- Expect total error (stat. +syst.) ~ Current World average from a single measurement!
 - Double tagged sample extremely clean

New Physics Searches

The job:

- Look for any hint of new physics
- Infinite spectrum of possibilities!
- Examine progress on:
 - <u>W'/Z'</u>
 - Squarks & gluinos
 - Chargino-neutralino
 - SM and BSM Higgs searches
- (Talks by G. Cortiana and M. P. Giordani in parallel sessions)

31/36

SUSY

Squark & gluino searches

 $p\overline{p} \to \widetilde{g}\widetilde{g} \to (\overline{q}\widetilde{q})(\overline{q}''\widetilde{q}'') \to \overline{q}(q'\widetilde{\chi}_{1}^{\pm})\overline{q}''(q'''\widetilde{\chi}_{1}^{\pm})$ $\chi_{i}^{0} \qquad \chi_{i}^{0}$

Look for hadronic decays:
 Charginos & heavier neutralinos eventually decay to quarks and

neutral LPS

- Signature is jets +MET
- New result from D0

IFAE - Catania: 31 Marzo 2005

Higgs search

Sensitivity reevaluated in June 2003

Conclusions

Tevatron is picking up

- Could exceed even best luminosity expectations!
- CDF & D0 are working well and delivering a wide range of physics results

Tevatron results are fulfilling expectations:

- On course for:
 - Detailed tests of QCD
 - Top mass resolution ~ 3 GeV/exp
 - W mass resolution ~ 30 MeV/exp
 - Bs mixing observation (and much more in B sector)
 - Setting strong limits on new physics and developing technology for Higgs searches in many channels

With luck and a consistent Tevatron performance we may observe hints of the Higgs boson or new physics before LHC turns on!

IFAE - Catania: 31 Marzo 2005

Tevatron performance projections much more reliable now:
→ 2 - 4 fb⁻¹ by end of FY07
→ 4.5 - 8.5 fb⁻¹ by end of Tevatron operation

IFAE - Catania: 31 Marzo 2005

Extended FNAL plan

Fermilab long range plan (FNAL Official schedule: March 5, 2004)

RUN or DATA

STARTUP/COMMISSIONING

40/36

 $\rightarrow \underline{\text{Back}}$

INSTALLATION

M&D (SHUTDOWN)

Calend Year	ar	2006	5		2007			2008			2009		
Tavatuan		BTeV		BTeV			BTeV			BTeV			<mark>BT</mark> eV
l evatron	n r	CDF		CDF			CDF			CDF			Open
Collider		& D0	& D0				& D0	& D0		& D0		Open	
Neutrino	В	OPEN			OPEN			OPEN		OPEN			OPEN
Program	MI	MINOS			MINOS			MINOS		MINO	S OPEN		OPEN
Masan		TestBeam			TestBeam			TestBeam			TestBeam		ТВ
	МС	OPEN			OPEN			E906# E906#		E906#		E906#	
M		OPEN			OPEN			OPEN		E921*			E921*

yy production

- - Need to rescale normalization
- > Models with soft/collinear gluon resummation explain better data

W+Jets

• W + jets production is the background for many signals including top quarks and Higgs bosons > Significant improvement in agreement with MC

46/36

Bs States: $\Delta\Gamma$ / Γ

 $\clubsuit B_S \to J/\psi \ \varphi \ \to \mu^+\mu^- \ K^+K^-$

Heavy state and light state decay with distinct angular distributions and different lifetimes.

- Decay angular distributions
 - 1/4 heavy state3/4 light state
 - > Lifetime $\tau_{heavy} \sim 2 \ge \tau_{light}$

>
$$\Delta \Gamma_{\rm S} / \Gamma_{\rm S} = 0.71 \, {}^{+0.24}_{-0.28} \pm 0.01$$

- Lifetime difference measures
 "same" CKM element as
 Δm (oscillation frequency)
- Exciting!! Need more data
 - $\geq \sim 5$ % sensitivity by 2007

$$\Delta m_{\rm s} = 10 \text{ ps}^{-1} \rightarrow \Delta \Gamma_{\rm S} / \Gamma_{\rm S} = 7\%$$

CDF: Bs ct-efficiencies

53/36

 \rightarrow back

Semi-leptonic sample

All ct efficiencies obtained with realistic MC

Cross check: lifetimes consistent with D0/WA

CDF: Bs ct-efficiencies

Hadronic sample

All ct efficiencies obtained with realistic MC

Cross check: lifetimes consistent with D0/WA

IFAE - Catania: 31 Marzo 2005

F. Bedeschi, INFN-Pisa

54/36 back

15

10

F. Bedeschi, INFN-Pisa

2.5

$c\tau$ resolution with L00

59/36

Old Sensitivity Plots

61/36

CDF: Bs Mixing (scan systematics)

62/36

 \rightarrow back

Semi-leptonic: dominated by backgrounds Hadronic: dominated by dilution (scales with statistics)

Include Same Side (Kaon) Tagging

- Expect twice tagging power than OST combined
- Improve accuracy of primary vertex
 Add more channels:
 - > Bs→Ds3π
 - → Bs→Ds*π, Bs→Dsρ⁺
 - Partial reconstruction can treat as semileptonic case

63/36

 \rightarrow back

- Several new results based on romple presented at
 - Branching fractions
 - > Integrated CP asymmetries
 - **Time dependent CP** asymmetries will be next Potential to extract γ with
 - accuracy $\sim 10^{\circ}$
 - See next pages for expectations

Branching ratios and CP asymmetry

	CDF/180 pb ⁻¹	Babar/200 fb ⁻¹	Belle/140 fb ⁻¹
N(B _d →K ⁺ π ⁻)	509	1600	1030
$\frac{BR(B_{d} \rightarrow \pi^{+}\pi^{-})}{BR(B_{d} \rightarrow K^{+}\pi^{-})}$	0.24±0.06±0.04	0.26±0.036±0.015*	0.24±0.035±0.018*
$A_{CP}(B_{d} \rightarrow K^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -})$	-0.04±0.08±0.01	-0.133±0.03±0.009	-0.088±0.03±0.013

Rare two body decay modes

	CDF/180 pb ⁻¹	PDG 2004	expectations
BR(B _d →K⁺K⁻)	< 0.17*BR(B _d →K⁺π⁻)		
	⇒ < 3.1*	< 0.6	[0.01 - 0.2] [Beneke&Neubert]
$BR(B_s \rightarrow \pi^+\pi)$			
	< 0.10*BR(B _s →K ⁺ K ⁻)**		0.42 ± 0.06 [Li et al. hep-ph/0404028]
	⇒ <3.4*	< 1700	[0.03 - 0.16] [Beneke&Neubert]
AE - Catania: 31 M	arzo 2005		F. Bedeschi, INFN-Pisa

66/36

$\stackrel{67/3}{\rightarrow bac}$						
Run II W mass expectat the W →e v channel	ions for	 W mass Most systematics scale with luminosity ■ E.g. size of Z control sample > σ(M_w) ~20-30 MeV/c²/experimer expected using all channels 				
Integral Luminosity (fb ⁻¹)	Run I (0.1)	2	15			
Number of W-> e _V	50K	1M	8M			
Statistical uncertainty	65	14	5			
Systematic uncertainty	92	39	17			
productio/decay model	47	32	13			
backgrounds	5	5	5			
Lepton resolution	25	8	4			
Energy scale	75	20	10			
Total uncertainty	113	41	17			

$dm_H/dm_W \sim 50 \text{ GeV}/25 \text{ MeV}$

IFAE - Catania: 31 Marzo 2005

D0 measurement over extended y range consistent with NNLO theory predictions

IFAE - Catania: 31 Marzo 2005

F. Bedeschi, INFN-Pisa

68/36

 \rightarrow back

Top Mass (l+jets)

 $M_{top}^{run ||} = 177.8^{+4.5}_{-5.0}(stat.) \pm 6.2(syst.)$ $M_{top}^{run ||} = 176.1 \pm 7.3 \text{ GeV/c}^2 (template)$

Systematic	∆mtop
Uncertainties	(GeV/c2)
Jet Energy Scale	5.3
Transfer function	2 .0
ISR	0.5
FSR	0.5
PDF	2 .0
Generator	0.6
Spin correlation	0.4
NLO effect	0.4
Background fraction	0.5
Background Model	0.5
MC Model	0.4
Total	6.2

→Example CDF measurement as of summer (ICHEP2004)

- Energy scale is dominant source of error!

IFAE - Catania: 31 Marzo 2005

70/36 back Top mass (progress) Progress using double tags as in TDR all 17 double tagged events Reconstructed Top Mass (GeV/c²) Invariant mass of hadronic W wmassggdbilag Entriea 17 66.95 Likelihood vs top mass RMS 20.16 Data (11 evts) Underflow Overflow Integral Signal + Bkgd Bkgd only 120 140 150 200 220 CDF Run II Preliminary 120 140 160 180 200 m. (GeV/c^2) 100 $67.0 \, { m GeV}/c^2$ mean $20.2 \, { m GeV}/c^2$ rms 11 events after χ^2 cut 0.5 17 Nevt Invariant mass of hadronic W 76.65 - Mean RMS Underfiow 80 100 120 140 160 180 200 220 240 260 Untagged di-280 10.02 $M_{top} = 180.9^{+6.1}_{-5.8}$ (stat.) GeV/c² Overflow Integral ē, jet mass (W) 162 pb⁻¹ 160 180 200 m (GeV/c^2) 100 $76.7 \, { m GeV}/c^2$ mean $10.0 \, { m GeV}/c^2$ rms IFAE - Catania: 31 Marzo F. Bedeschi, INFN-Pisa Nevt 11

Top quark

How much better can we do in Run II?

Invariant mass from untagged quarks calibrates light q energy scale and gluon radiation (FS)

Integral Luminosity (fb ⁻¹)	Run I (0.1)	2	15	
Double b-tag W + jet	5	240	1,800	
Statistical uncertainty	4.8	1.7	0.63	
Systematic uncertainty	5.3	2.1	1.2	
jet scale (light quarks)	4.4	1.8	0.64	
jet scale (beauty quarks)	-	0.5	0.19	
background	1.3	-	-	
gluon radiation	2.6	1.1	0.97	
Total uncertainty	7.2	2.7	1.1	
Per experiment				
Similar for di-leptons	Use Z-	b b	to c	alibrate
	b-jet en	erg	y sca	ıle

IFAE - Catania: 31 Marzo $20m_H/dm_t \sim 50 \text{ GeV}/4 \text{ GeV}$

Expected Run II Top Quark Studies Accuracy

Measurement	Precision
Top Mass	2-3 GeV/c ²
δσ(ttbar)	9%
δσ(II)/σ(I+j)	12%
δB(t→Wb)	<mark>2.8%</mark>
$\delta \mathbf{B}(\mathbf{W}_{longitudinal})$	<mark>5.5%</mark>
δV _{tb}	13%
B(t→cγ)	<mark><2.8 Ⅹ 10⁻³</mark>
B(t→Zc)	<1.3 X 10 ⁻²

F. Bedeschi, INFN-Pisa

72/36

 \rightarrow back
W'/Z' searches

Large samples analyzed with 200 pb⁻¹/experiment

INFN-Pisa

500

600

73/36

 \rightarrow back

Charginos & Neutralinos

mSUGRA

Neutralino is LSP

Look 3 leptons + Missing Et

GMSB

Gravitino is LSP
 Neutralino (NLSP) → gravitino + γ
 Look for γγ + MET + X

IFAE - Catania: 31 Marzo 2005

F. Bedeschi, INFN-Pisa

75/36

 \rightarrow back

Tri-lepton search

New D0 limit (model dependent): χ[±] < 116 GeV - 31 - max χ[±] < 128 GeV - Heavy Squarks Better than LEP in some scenarios CDF (run II) limit close to

being complete

F. Bedeschi, INFN-Pisa

Search for $H \rightarrow \gamma \gamma$

In the SM Higgs $\rightarrow \gamma\gamma$ has Br~10⁻³ \rightarrow search for SM Higgs decaying to gamma pair is not practical at Tevatron

Many SM extensions allow enhanced gamma pair decay rate largely due to suppressed coupling to fermions
→ Fermiphobic Higgs
→ Topcolor Higgs

Search strategy: Look for peaks in $\gamma\gamma$ mass spectrum for high P_t isolated γ 's

F. Bedeschi, INFN-Pisa

SUSY search expectations

Old Run II sensitivity estimates consistent with current results

F. Bedeschi, INFN-Pisa