

STATO E CARATTERIZZAZIONE DEL RICH-1 DI COMPASS

S. Dalla Torre INFN – TRIESTE (per il gruppo COMPASS RICH)

ISTITUTI:

Torino, INFN e Universita'
Trieste, INFN e Universita'
Bielefeld, Universita', contributo sistema gas
CERN, suppoto tecnico

argomenti scelti:

- perche' parlare di RICH
- Il RICH-1 in COMPASS
- le principali caratteristeche del hardware
- le prestazioni del rivelatore

VITALITA' DEI RIGH 1/2

Physics Topic	Examples: Exciting Issues (2004)	Some Experiments with RICH; Active/ Future: (and without RICH)
Heavy Flavor Physics	 Confronting the Standard Model: Precision Measurements of CP Violation in B Sector; Are there experimental hints of New Physics? 	BaBar(SLAC), BELLE(KEK), CLEO- III(Cornell), CKM, SELEX, BTeV (Fermilab) LHCb (CERN); Super B- Factory (SLAC/KEK?)
Hadron Structure	 Do Pentaquarks exist? Do other exotic hadrons exist? What is quark content of new states? E.g., D_{sJ}[2317]; D_{sJ}[2460]; D_{sJ}[2632](SELEX); X(3872) 	Many of the Heavy Flavor Experiments above; HERMES(DESY); COMPASS(CERN); (SELEX(Fermilab)) GSI: PANDA, CBM HALL-A (JLAB)
Neutrino Physics	 First Confirmed Physics Beyond SM Are neutrinos Dirac or Majorana? What is the mass hierachy? Neutrino Astrophysics 	Super Kamiokande; SNO(Sudbury); Lake Baikal; Ice Cube(South Pole); Antares(Mediterranean); NESTOR (Greece)

tabella di B. Ratcliff – RICH2004 (con qualche aggiounta)

Physics Topic	Examples: Exciting Issues (2004)	Some Experiments with RICH; Active/ Future: (and without RICH)
Quark Matter at High Density (Heavy Ions)	Discovery of Quark-Gluon Plasma	HADES(GSI) PHENIX(RHIC) STAR(RHIC) ALICE (CERN)
High Energy Frontier	Discovery! • Higgs?; • Supersymmetry?	CDF/DO(Fermilab) LHC/ILC
Astro-particle physics	 Ultra High Energy Cosmic Rays; Very High Energy Gamma Rays; 	Discussed at this conference AMS-02(Space) Auger (Argentina) HESS (Namibia); Puebla TUNKA (Siberia) Mexico/Chalcataya Magic (la Palma)

tabella di B. Ratcliff – RICH2004 (con qualche aggiounta)

studio della fisica adronica

<u>Con fascio di muoni</u>

- Contributo gluonico allo spin dei nucleoni ∆G/G
- Le funzioni di distribuzione di spin trasverso Δ_Tq (x)
- la separazione in flavour delle distribuzioni di densita' polarizzate dei quark ∆q(x)
- la fisica delle Λ
- Ia produzione difrattiva di VM
- * Data collected

<u>Con fasci adronici</u>

- Reazioni Primakoff
 Polarizzzabilita' del π e del K
- Glueball e ibridi
- Mesoni e barioni con charm
 - Decadimenti semi-leptonici
 - Barioni doppiamente charmati

COMPASS RICH-1 - IL DISEGNO

- h-PID fino a p > 50 GeV/c
- grande accettanza(= grandi dimensioni trasverse):
 - H: 500 mrad
 - V: 400 mrad
- capacita' di sostenere
 - rate di trigger fino a 10⁵ Hz
 - rate di fascio fino a 10⁸ Hz
- materiale minimizzato
- + progetto del 1996

rivelatori di fotoni: 5.3 m² MWPC (8 camere) con fotocatodi a Csl

read-out:

84,000 canali analogici

con intelligenza locale estesa

Silvia DALLA TORRE

COMPORTAMENTO DEI FOTORIVELATORI

instabilita' elettriche dei fotorivelatori in ambiente radioattivo (*),

TEMPI DI RECUPERO LUNGHI ! (~ 1 d)

instabilita' legate a piccoli difetti locali

superate con :
controllo parametri geometrici
ispezione filo (al microscopio)
validazione al GIF

2001 - 2/8 camere stabili 2002 - 5/8 camere stabili 2003, 2004 – segmentando la HV: 97% della superficie camere stabile

⇒stabili fino a ~2000 V ⇒ ε_{fotoel} = 65-70% (85% ai test beam)
(*) nel fascio di μ :

flusso di MIP : ~ 5 x 10⁵ / s / m² flusso di fotoni : fino a 3 x 10⁵ / s / cm²

filo difettoso, diametro 20 μm

Catania, 30/3-1/4/2005 - IFAE

PRESTAZIONI

L'INFORMAZIONE BRUTA

un evento, run di calibrazione

particelle selezionate secondo l'angolo polare e producendo bande in $\theta_{ring} \rightarrow$ informazione su :

- risoluzione
- numero di fotoni rivelati
- fondo

L'IDENTIFICAZIONE

Si identififca chiaramente una regione completamente piatta (nessuna perdita di fotoni), adeguata per il settaggio non critico della soglia, fra la regione del cross-talk (a basse soglie) e la regione dove inizia la perdita di fotoni (visibile nel terzo plot)

CONCLUDENDO

- Il RICH-1 di COMPASS e' pienamente operativo
 - ha raggiunto il plateau delle prestazioni nel 2003
- Il RICH-1
 - progettato a meta' degli anni 90
 - parametri di disegno severi concernenti
 - le dimensioni trasversali
 - le rate (beam, trigger)
 - → RICH VUV di grandi dimensioni con radiatore gassoso
- si sono riscontrate limitazioni nell' operare fotocatodi a CsI di grandi dimensioni in ambiente radioattivo
- la risoluzione di fotone singolo e' soddisafcente e vicina al valore di disegno
- la risoluzione per anello e' limitata dal fondo fisico e dal numero di fotoni rivelati
 - permette separazione a livello di 2.5 σ di π / K fino a 40 GeV/c
- il rivelatore e' centrale per la fisica di COMPASS (esempio: $\Delta G/G$)