BR e violazione di CP in decadimenti charmless a CDF.

Massimo Casarsa Sez. INFN di Trieste for the CDF Collaboration

IFAE 2005 Catania, 30 Marzo - 2 Aprile 2005

- Experimental setup:
 - the Tevatron collider;
 - ▶ the CDF detector.
- The hadronic trigger.
- Overview of CDF results on charmless decays:
 - ► $B_{d,s} \rightarrow h^- h'^+$ (h,h' = π ,K), BR and A_{CP} ;
 - ▶ $B^{\pm} \rightarrow \phi K^{\pm}$, BR and A_{CP} ;
 - $B_s \rightarrow \phi \phi$ evidence and BR;
 - search for $\Lambda_b \rightarrow p\pi^-/pK^-$.
- Conclusion and perspective.

The Tevatron collider

 36×36 bunch *p-p̄* beams collide every 396 ns at 1.96 TeV

The CDF tracking system

LAYER00 1 radiation-hard silicon layer at R = 1.5 cm.

COT 1 4 m radius Ar-Ethane multiwire drift chamber

- 96 layers, 200ns drift time;
- precise p_{T} above 0.4 GeV/c,
- precise 3D tracking for $|\eta| < 1$: $\sigma(p_{T})/p_{T}^{2} \approx 0.0017 \ [GeV/c]^{-1}$ ≈ 150 µm
- dE/dx provides 1.4σ K/ π separation for $p_{\tau}>2$ GeV/c.

SVX II - ISL 6 (7) double-sided micro-strip Si layers between 3 cm < R < 30 cm

- standalone 3D tracking up to $|\eta|=2$;
- very good I.P. resolution: ~30 µm (~20 µm with L00).

Introduction

- Charmless two-body B decays are important tools for understanding the CKM mixing and looking for new physics.
- Hadronic machines offer large yields $(\sigma_{bb} \approx 50\text{-}100 \ \mu\text{b})$ and additional access to B_s and b baryons.
- Total inelastic cross-section is $\sim 10^3 \times \sigma_{bb}$ while BR of interesting processes are of the order O(10⁻⁵-10⁻⁶).

 Messy environment, large combinatorics, need for a high selective trigger.

CDF hadronic trigger

$B_{d,s} \rightarrow h^- h'^+$: signal selection

$B_{d,s} \rightarrow h^- h'^+$: modes separation

kinematics

Exploit correlations between mass and signed momentum imbalance:

 $M_{\pi\pi}$ vs $\alpha = q_{min} (1-p_{min}/p_{max})$

Particle ID

- Based on dE/dx measured in COT.
- dE/dx calibrated on $D^{*+} \rightarrow D^0 \pi^+$.
- 1.4 σ K/ π separation for p_T > 2 GeV/c.

 The fraction of each compenent is extracted from an unbinned Maximim-Likelihood fit on: M_{ππ}, α, tracks PID.

Parameter	Value	# of events
$f(B_{d} \to \pi\pi)$	0.15 ± 0.03	134
$f(B_{d} \to K\pi)$	0.57 ± 0.03	509
$A_{CP}(B_{d}\toK\pi)$	-0.05 ± 0.08	_
$f(B_{s} \to K\pi)$	0.02 ± 0.03	0
$f(B_{s} \to KK)$	0.26 ± 0.03	232

- Raw results need 5-10% corrections for efficiency differences between channels:
 - ✓ ε_{trig}
 ✓ ε_{reco}
 ✓ ε_{ana}

 ✓ ^ε_{XFT}
 ✓ ε_{isol} (only for B_s/B_d ratios)

- Main systematic sources:
 - 16% from dE/dx calibration (D^{*+} \rightarrow D⁰ π ⁺ sample);
 - 10% from isolation cut efficiency (B_u, B_d, B_s control samples).

B_d sector

	CDF (180 pb ⁻¹)	BaBar (200 fb ^{−1})	Belle (140 fb ⁻¹)
$N(B_d \rightarrow K^+ \pi^-)$	509	1600	1030
$\frac{\text{BR(B}_{\text{d}} \rightarrow \pi^{+}\pi^{-})}{\text{BR(B}_{\text{d}} \rightarrow \text{K}^{+}\pi^{-})}$	$\textbf{0.24} \pm \textbf{0.06} \pm \textbf{0.04}$	$0.26 \pm 0.036 \pm 0.015^{(\star)}$	$0.24 \pm 0.035 \pm 0.018^{(\star)}$
$A_{CP}(B_d \rightarrow K^+\pi^-)$	$-0.04 \pm 0.08 \pm 0.01$	$-0.133 \pm 0.03 \pm 0.009$	$-0.088 \pm 0.03 \pm 0.013$

^(*) calculated from HFAG2004

- Ratio of B_d BR consistent with other experiments
 ⇒ provides valuable cross-check for the other BR measurements.
- A_{CP} compatible with BaBar/Belle.
- Systematic uncertainties at the same level.

B_s sectorCDF (180 pb^{-1})Expectations $BR(B_s \rightarrow KK)$ $(0.50\pm0.08\pm0.09) BR(B_d\rightarrow K\pi) (f_d/f_s)$
= [34.3 ± 5.5 ± 5.2] × 10^{-6} (*) $[23-36] \times 10^{-6}$
Beneke Neubert, Nucl. Phys. B675 (2003) $BR(B_s \rightarrow K\pi)$ $< 0.11 \times BR(B_d\rightarrow K\pi) (f_d/f_s)$
 $\Rightarrow < 7.55 \times 10^{-6}$ @ 90% C.L. (*) $[7-10] \times 10^{-6}$
Beneke Neubert, Nucl. Phys. B675 (2003)

^(*) based on BR($B_d \rightarrow K\pi$) and f_d / f_s from PDG2004

B_{d,s} rare modesCDF (180 pb⁻¹)PDG2004ExpectationsBR(B_d \rightarrow KK)< 0.17 \times BR(B_d \rightarrow K π)
 \Rightarrow < 3.1 \times 10⁻⁶ @ 90% C.L.<0.6 \times 10⁻⁶[0.01-0.2] \times 10⁻⁶
Beneke Neubert, Nucl. Phys.
B675 (2003)BR(B_s \rightarrow $\pi\pi$)0.10 \times BR(B_s \rightarrow KK)
 \Rightarrow < 3.4 \times 10⁻⁶ @ 90% C.L.<1700 \times 10⁻⁶
Beneke Neubert, Nucl. Phys.
B675 (2003)

$B^{\pm} \rightarrow \phi K^{\pm}$: sample selection

180 pb⁻¹

- \checkmark b \rightarrow sss quark level transition: in SM dominated by gluon penguin;
- \checkmark no A_{CP} expected \Rightarrow sensitive to new physical states.
- Yield and A_{CP} asymmetry are extracted simultaneously from an extended unbinned Maximum-Likelihood fit on:
 - \checkmark M_{KKK}, \checkmark \diamond helicity, **✓** M_φ,
 - ✓ dE/dx.
- BR relative to $B^{\pm} \rightarrow J/\psi K^{\pm} w/ J/\psi \rightarrow \mu\mu$:
 - ✓ B production cross section cancels;
 - ✓ systematic on efficiencies reduced.

Channel	Yield	Asymmetry
$B^{\pm} \to \phi K^{\pm}$	47.0 ± 8.4	-0.07 ± 0.17
$B^{\pm} \to J/\psi K^{\pm}$	439 ± 22	0.046 ± 0.050

- ϕ is reconstructed in K⁺K⁻ final state.
- Selection cuts optimized for max S/(S+B)^{1/2} [S from MC, B from data sidebands]:
 - ► $|d_0^{(\text{soft})}| > 120 \ \mu\text{m};$ ► $|d_0^{(B)}| < 100 \ \mu\text{m};$ λ_{xy}⁻² < 8;
 L_{xy} > 350 μm;

Catania, 30 Marzo - 2 Aprile 2005

$B^{\pm} \rightarrow \phi K^{\pm}$: BR and A_{CP}

= $[7.6 \pm 1.3(stat.) \pm 0.7(syst.)] \times 10^{-6}$

$$A_{CP} = \frac{\Gamma(B^- \to \phi K^-) - \Gamma(B^+ \to \phi K^+)}{\Gamma(B^- \to \phi K^-) + \Gamma(B^+ \to \phi K^+)} = -0.08 \pm 0.17(stat.)^{+0.03}_{-0.02} (syst.)$$

Main systematic error sources:

 \checkmark 3% from fit modeling;

✓ 5.6% from efficiencies (only BR).

Catania, 30 Marzo - 2 Aprile 2005

- \checkmark b \rightarrow sss quark level transition: in SM dominated by gluon penguin;
- mixture of CP-even and CP-odd eigenstates, angular analysis allows to project out CP components:
 - \Rightarrow access $\Delta\Gamma_{s}$;
 - \Rightarrow test polarization predictions.
- Never seen before.
- A blind analysis was performed in anticipation of a small signal rate.
- Cuts optimized using the score function [G.Punzi hep-physics/0308063]:

MC efficiency for the i-th set of cuts

$$\frac{1}{S_{min}} \propto \frac{\varepsilon_i}{a/2 + \sqrt{B_i}}$$
 with a = 3
expected bkg from ϕ sidebands for the i-th set of cuts

- \checkmark for a=3 maximize the sensitivity region for a 3 σ discovery with 99% C.L.;
- optimization independent from MC normalization;
- ✓ divergence safe for $B_i << 1$.

$\mathbf{B}_{s} \rightarrow \boldsymbol{\varphi} \boldsymbol{\varphi}$ evidence

- combinatorial bkg: 0.35±0.37
 estimated from both \u00f6's sidebands;
- ► $B_d \rightarrow \phi K^{*0}$: 0.37±0.18 estimated from MC.

 Poisson probability of a bkg fluctuation to the observed or higher number of signal events: 1.3 × 10⁻⁶.

${\rm B_s} \rightarrow \phi \phi$ branching ratio

Main systematic error sources:

- ✓ 36% from $B_s \rightarrow J/\psi \phi$ BR;
- ✓ 8% from $B_s \rightarrow J/\psi \phi$ yield and background;
- ✓ 4% from $B_s \rightarrow \phi \phi$ polarization and $\Delta \Gamma_s$.

QCDF expectation:

 $BR(B_s \rightarrow \phi \phi) = 13.1 \times 10^{-6}$

[Li,Lu,Yang hep-ph/0309136]

Search for $\Lambda_b \rightarrow p\pi^-/pK^-$

- Blind optimization to reduce background in Λ_{b} mass region.
 - d Normalized to $B_d \rightarrow K\pi$.

• Using $f_{\Lambda}/f_{d} = 0.25 \pm 0.04$:

 $BR(\Lambda_b \rightarrow p\pi^-) + BR(\Lambda_b \rightarrow pK^-) < 22 \times 10-6 @ 90\% C.L.$

- CDF is now a player in the field of charmless 2-body B decays, increasingly important with Tevatron higher luminosity.
- First generation results will be improved soon:
 - ✓ ×3 more luminosity;
 - ✓ better tracking and PID;
 - ✓ dedicated trigger on non-prompt $\phi \to K^+K^-$.
- New results expected:

✓ B_s → KK lifetime ⇒ ΔΓ_s;
✓ B_s → Kπ BR and A_{CP};
✓ Λ_b → ph BR and A_{CP};
✓ B_s → φφ polarization amplitudes and lifetime;
✓ new B_s decays visible.

Backup slides

$B_{d,s} \rightarrow h^- h'^+$: systematics

source	$\frac{f_s}{f_d} \cdot \frac{BR(B_s \rightarrow KK)}{BR(B_d \rightarrow K\pi)}$	$A_{CP}(B_d \to K\pi)$	$\frac{BR(B_d \rightarrow \pi\pi)}{BR(B_d \rightarrow K\pi)}$	$\frac{f_d}{f_s} \cdot \frac{BR(B_d \rightarrow \pi \pi)}{BR(B_s \rightarrow KK)}$
mass resolution	$^{+0.001}_{-0.004}$	$^{+0.001}_{-0.001}$	$^{+0.001}_{-0.002}$	$^{+0.001}_{-0.001}$
dE/dx correlation: RMS(s)	$^{+0.043}_{-0.031}$	$^{+0.002}_{-0.002}$	$^{+0.034}_{-0.025}$	$^{+0.029}_{-0.017}$
dE/dx correlation: $pdf(s)$	$^{+0.002}_{-0.002}$	$^{+0.002}_{-0.002}$	$^{+0.000}_{-0.000}$	$^{+0.002}_{-0.002}$
dE/dx tail	$^{+0.056}_{-0.056}$	$^{+0.003}_{-0.003}$	$^{+0.020}_{-0.020}$	$^{+0.017}_{-0.017}$
dE/dx shift	$^{+0.001}_{-0.002}$	$^{+0.001}_{-0.001}$	$^{+0.001}_{-0.003}$	$^{+0.017}_{-0.005}$
input masses	$^{+0.027}_{-0.028}$	$^{+0.003}_{-0.003}$	$^{+0.009}_{-0.010}$	$^{+0.009}_{-0.010}$
background model	$^{+0.005}_{-0.005}$	$^{+0.002}_{-0.002}$	$^{+0.003}_{-0.003}$	$^{+0.000}_{-0.000}$
lifetime	$^{+0.004}_{-0.004}$	-	-	$^{+0.004}_{-0.004}$
isolation efficiency	$^{+0.051}_{-0.051}$	-	-	$^{+0.050}_{-0.050}$
MC statistics	$^{+0.004}_{-0.004}$	$^{+0.001}_{-0.001}(*)$	$^{+0.003}_{-0.003}$	$^{+0.006}_{-0.006}$
charge asymmetry	-	$^{+0.002}_{-0.002}$	-	-
XFT-bias correction	$^{+0.010}_{-0.007}$	-	$^{+0.004}_{-0.004}$	$^{+0.015}_{-0.010}$
$p_T(B)$ spectrum	$^{+0.007}_{-0.007}$	-	-	$^{+0.007}_{-0.007}$
$\Delta \Gamma_s / \Gamma_s$ Standard Model	$^{+0.007}_{-0.006}$	-	-	$^{+0.006}_{-0.006}$
TOTAL	± 0.09	± 0.01	± 0.04	± 0.07

Catania, 30 Marzo - 2 Aprile 2005

$B^{\pm} \rightarrow \phi K^{\pm}$: systematics

		SYSTEMATIC	ERROR [%]
		$B^{\pm} \to \phi K^{\pm}$ yield	3.0
		$B^{\pm} \to J/\psi K^{\pm}$ yield	3.3
		$\varepsilon_{\mu\mu K}/\varepsilon_{KKK}$	1.5
		$\langle \varepsilon_{\mu} \rangle$	2.6
DD		$\varepsilon_{R_{iso}}$	1.4
DK	1	Particle dependent XFT efficiency	3.3
	acceptance φ dependence due to COT ageing	0.3	
	χ^2_{xy} cut efficiency	3.0	
	$B\dot{R}(J/\psi \to \mu\mu)$	1.2	
		$BR(\phi \to KK)$	1.7
		TOTAL	7.4
	č		
A _{CP}	SYSTEMATIC ERROR		
	fit $+0.034$ -0.020		
	1	detector charge asymmetry 0.005	
	TOTAL $+0.034$ -0.021		

Systematic	Error
XFT efficiency by particle species	2.5%
XFT efficiency due to COT ageing	0.3%
XFT efficiency correction parameterization	2.1%
Polarization of $B_s \to \phi \phi$ decay	3.8%
Polarization of $B_s \to J/\psi \phi$ decay	1.4%
$\Delta\Gamma_s$ theory uncertainty	0.6%
$B_s \to J/\psi \phi$ yield determination	6.1%
Backgrounds	5.4%
track-muon stub matching efficiency	5.8%
$J/\psi,\phi$ BR	2.1%
sub-total	11%
$BR(B_s \to J/\psi\phi)$	36%
Total	38%

$B_d \rightarrow h^{\pm} h^{\mp}$		
Model function	5.7%	
Background		
Model function	3.3%	
Efficiency ratio		
$\Lambda_b \to p\pi/\Lambda_b \to pK$ ratio	2.3%	
Window position	1.2%	
Window width	9%	
Lifetime	3.6%	
XFT proton efficiency	6%	
$p_T(\Lambda_b)$	17%	
Overall systematic	21%	
$BR(B_d \to K\pi)$	8.6%	
$f(\Lambda_b)/f(B)$	16%	