

Il Triangolo Unitaritio nel Modello Standard e oltre

Maurizio Pierini

on behalf of **UT***fit* Collaboration

M. Bona, M. Ciuchini, E. Franco,
V. Lubicz, G. Martinelli, F. Parodi,
M. P., P. Roudeau, C. Schiavi,
L. Silvestrini, A. Stocchi

http://www.utfit.org

Modello Standard e Violazione CP

Gli autostati di massa non sono autostati dell'interazione debole. La Lagrangiana dello Standard Model contiene la matrice di mescolamento V_{CKM}

$$\begin{array}{c} \mathbf{u} \quad \mathbf{c} \quad \mathbf{t} \\ \mathbf{d} \quad \mathbf{s} \quad \mathbf{b} \end{array} V_{CKM} = \begin{pmatrix} Vud \quad Vus \quad Vub \\ Vcd \quad Vcs \quad Vcb \\ Vtd \quad Vts \quad Vtb \end{pmatrix} \simeq \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\overline{\rho} - i\overline{\eta}) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \overline{\rho} - i\overline{\eta}) & -A\lambda^2 & 1 \end{pmatrix}$$

L'esistenza delle tre famiglie di quark implica la presenza di una fase non riassorbibile nella ridefinizione dei quark. La presenza di un elemento complesso porta alla violazione di CP

Il Triangolo di unitarietà

La matrice CKM viene da una rotazione nella base dei quark. Conservazione della probabilità → Unitarietà

$$V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0$$

$$\alpha = \pi - \beta - \gamma$$
normalized:
$$\bar{\rho} + i\bar{\eta}$$

$$V_{ud}V_{ub}^{*}$$

$$\gamma = atan\left(\frac{\bar{\eta}}{\bar{\rho}}\right)$$

$$\gamma(\phi_{3})$$

$$\beta(\phi_{1})$$

$$\gamma(\phi_{3})$$

$$\gamma(\phi_{1})$$

$$\gamma(\phi_{3})$$

$$\gamma(\phi_{1})$$

$$\gamma$$

$|\mathbf{V}_{ub}/\mathbf{V}_{cb}|$

Processo ad albero \rightarrow eventuali contributi nuova fisica trascurabili

$$\left|\frac{V_{ub}}{V_{cb}}\right| = \frac{\lambda}{1 - \frac{\lambda^2}{2}} \sqrt{\bar{\rho}^2 + \bar{\eta}^2}$$

 $sin 2\beta da A_{CP} B^0 \rightarrow J/\psi K^0$

$$a_{f_{CP}}(t) = \frac{\operatorname{Prob}(B^{\circ}(t) \to f_{CP}) - \operatorname{Prob}(\overline{B^{\circ}}(t) \to f_{CP})}{\operatorname{Prob}(\overline{B^{\circ}}(t) \to f_{CP}) + \operatorname{Prob}(B^{\circ}(t) \to f_{CP})} = C_f \cos \Delta m_d t + S_f \sin \Delta m_d t$$

$$a_{f_{CP}}(t) = -\eta_{CP} \sin \Delta m_d \Delta t \sin 2\beta$$

Δm_d dal $B_d - B_d$ mixing

Δm_s dal $\overline{B}_s - B_s$ mixing(I)

$$\Delta m_d \approx [(1-\rho)^2 + \eta^2] \frac{f_{B_s}^2 B_{B_s}}{\xi^2}$$
$$\Delta m_s \approx f_{B_s}^2 B_{B_s}$$

Nessuna dipendenza da $\overline{\rho}$ ed $\overline{\eta}$, ma impatto su Δm_d attraverso ξ e $f_{B_s}B_{B_s}$ (da lattice QCD)

NB: novità rispetto al passato: in questo modo si riduce l'incertezza delle estrapolazioni in LQCD

L A B O R A T O I R E DE L'ACCÉLÉRATEUR

Il metodo Statistico

Le grandezze misurate, funzioni di $\overline{\rho}$ ed $\overline{\eta}$, sono messe in relazione a $\overline{\rho}$ ed η tramite il teorema di Bayes

L A B O R A T O I R E DE L'ACCÉLÉRATEUR

Input ulilizzati

I I N É A I P	-		
Nuovi dati	λ	0.2265 ± 0.020	
ma WA non	V_{cb} inclusive	$41.6 \pm 0.7 \pm 0.6 \cdot 10^{-3}$	average from inclusive
ancora	V_{cb} exclusive	$41.4 \pm 2.1 \cdot 10^{-3}$	average from exclusive
disponibil	$^{f L}V_{ub}$ inclusive LEP	$4.09 \pm 0.62 \pm 0.47 \cdot 10^{-3}$	LEP average
	V_{ub} inclusive HFAG	$4.70 \pm 0.44 \cdot 10^{-3}$	HFAG Winter 04
	V_{ub} exclusive	$3.30 \pm 0.24 \pm 0.46 \cdot 10^{-3}$	
	Δm_d	$0.502 \pm 0.007 ~ ps^{-1}$	LEP/SLD/CDF/B-Factories
novita da			
novita da Tevatron	Δm_s	$> 14.5 \; ps^{-1}$	LEP/SLD/CDF
novita da Tevatron	Δm_s m_t	$> 14.5 \; ps^{-1}$ $168.5 \pm 4.1 \; GeV$	LEP/SLD/CDF CDF/D0
novita da Tevatron	Δm_s m_t m_c	$> 14.5 \ ps^{-1}$ $168.5 \pm 4.1 \ GeV$ $1.3 \pm 0.1 \ GeV$	LEP/SLD/CDF CDF/D0
novita da Tevatron novità	Δm_s m_t m_c $f_{B_s} \sqrt{\hat{B}_{B_s}}$	$> 14.5 \ ps^{-1}$ $168.5 \pm 4.1 \ GeV$ $1.3 \pm 0.1 \ GeV$ $276 \pm 38 \ MeV$	LEP/SLD/CDF CDF/D0 Lattice QCD
novita da Tevatron novità da LQCD	Δm_s m_t m_c $f_{B_s} \sqrt{\hat{B}_{B_s}}$ ξ	$> 14.5 \ ps^{-1}$ $168.5 \pm 4.1 \ GeV$ $1.3 \pm 0.1 \ GeV$ $276 \pm 38 \ MeV$ $1.24 \pm 0.04 \pm 0.06$	LEP/SLD/CDF CDF/D0 Lattice QCD Lattice QCD
novita da Tevatron novità da LQCD	Δm_s m_t m_c $f_{B_s}\sqrt{\hat{B}_{B_s}}$ ξ B_K	> 14.5 ps^{-1} 168.5 ± 4.1 GeV 1.3 ± 0.1 GeV 276 ± 38 MeV 1.24 ± 0.04 ± 0.06 0.79 ± 0.04 ± 0.09	LEP/SLD/CDF CDF/D0 Lattice QCD Lattice QCD Lattice QCD

Nuova Likelihood di Δm_s BORATOIRE DE L'ACCÉLÉRATEUR $P_{B^0_q o B^0_q(ar{B}^0_q)} = rac{1}{2} e^{-t/ au_q} (1 \pm A \cos \Delta m_q t)$ ÉA IRF hint di segnale @ World Average and CDF II $\Delta m_s \sim 17.5 \text{ ps}^{-1} \text{con}$ 2 -+ data ± 1 σ 🔺 95% CL limit 14.5 ps⁻¹ $\sim\!\!2\sigma$ di significanza 18.6 ps⁻¹ ····· 1.645 σ o sensitivity data ± 1.645 σ data \pm 1.645 σ (stat. only) nero: pre-CKM2005 Amplitude rosso: CKM2005 Prob 0 10 15 20 5 mixing frequency, Δm_s [ps⁻¹] 10 15 20 25 30 35 $\Delta m_s > 14.5 \text{ ps}^{-1}$ @ 95% CL Δm_{s} [psec⁻¹] sensibilità @ 18.6 ps⁻¹

Risultati del Fit Standard

ORATOIRE

Predizioni su Δm_s e test SM

UT_{fit} e predizioni LQCD (I)

E' possibile ottenere predizioni sui parametri di Lattice QCD utilizzando le altri informazioni

B O R A T O I R E 'ACCÉLÉRATEUR

α da analisi SU(2)

Utilizzando SU(2) per scrivere le ampiezze:

Simile approcccio studiando $(\rho\pi)^{\circ}$ sul piano di Dalitz

α da analisi SU(2)

ADS(Atwood, Dunietz, Soni): B⁰ and B⁰ nello stesso stato finale

$$R_{ADS} = r_B^2 + r_{DCS}^2 + 2r_B r_{DCS} \cos \gamma \cos(\delta_B + \delta_D)$$

ad esempio $D^0 \rightarrow K_S \pi^+ \pi^-$

 γ da $B \rightarrow D^{(*)}K(II)$

$\cos 2\beta$ da $B \rightarrow J/\psi K^{*0}$

Combinazione scettica dei risultati di BaBar e Belle $\cos 2\beta = 1.9 \pm 1.3$ > 0 @ 87% Probabilità

Rimossa ambiguità associata a sin2 β

 $sin2\beta+\gamma$ da $B\rightarrow D^{(*)}\pi(\rho)$

- Interferenza b→u vs b→c come per DK
 - Sistema aperto (2 osservabili per $2\beta+\gamma$, r e δ)
 - Solo conoscendo r si può estrarre 2 β + γ

- Estrazione di r da $B \rightarrow D_s \pi$
- Errore teorico 30% (guessed)
- Incertezza fuori controllo, non incluso nel fit

Fit solo Angoli

 $sin 2\beta + cos 2\beta + \gamma + \alpha$

Precisione comparabile a quella dell'analisi nell'era pre B factory

Fit da tutte le info

Analisi Standard + $\cos 2\beta$ + γ + α

Perfetto accordo tra le nuove misure e l'analisi: meccanismo CKM spiega la violazione di CP

 $B \rightarrow \tau v$ (BaBar)

Determinazione di $\overline{\rho}$ e $\overline{\eta}$ da processi ad albero

Con le nuove misure dalle B factory, (trascurando 12 effetti di NP nel mixing $\overline{D}-D$) γ è possibile determinare ρ and η da $|V_{ub}/V_{cb}|$ e γ fornendo un paradigma a tutti 0.5 i modelli di NP in letteratura $\overline{\rho} = \pm 0.21 \pm 0.10$ 0 $\eta = \pm 0.36 \pm 0.06$ -0.5 $\sin 2\beta = 0.724 \pm 0.074 \text{ U} - 0.556 \pm 0.089$ $\alpha = (95\pm15)^{\circ} U (-43\pm15)^{\circ}$ -0.5 -1 0 0.5 ρ

Generalizzazione alla Nuova Fisica

Parametrizzazione generalizzata della NP nella Hamiltonian $|\Delta F|=2$. Possiamo fittare i nuovi parametri e $\overline{\rho}$ ed $\overline{\eta}$ insieme

αľĭ

$$|\varepsilon_{\rm K}|^{\rm EXP} = C_{\varepsilon} |\varepsilon_{\rm K}|^{\rm SM} \qquad \Delta m_{\rm d}^{\rm EXP} = C_{\rm Bd} \Delta m d^{\rm SM} |\varepsilon_{\rm K}|^{\rm EXP} = \alpha^{\rm SM} - \phi_{\rm Bd} \qquad A_{\rm CP} (J/\psi K^0) = \sin(2\beta + 2\phi_{\rm Bd})$$

Assumendo SU(2), la NP nella Hamiltoniana nuove fasi deboli nei pinguini in α . Basta generalizzare il bound su α per tenerne conto $A^{+-} = -Te^{-i\alpha} + Pe^{i\phi_P}e^{i\delta_P}$ $A^{+0} = -\frac{1}{\sqrt{2}} \left[e^{-i\alpha} \left(T + T_c e^{i\delta_{T_c}} \right) \right]$ $A^{00} = -\frac{1}{\sqrt{2}} \left[T_c e^{-i\alpha} e^{i\delta_{T_c}} + Pe^{i\phi_P}e^{i\delta_P} \right]^{-1}$

Risultati per parametri NP e Δm_s

UUT: analisi generalizzata SM e MFV Nessuna ulteriore sorgente di mescolamento in

Nessuna ulteriore sorgente di mescolamento in MFV. Solo processi di mixing sono sensibili a NP:

 \clubsuit Escludiamo ϵ_{κ} dal fit

Buras et al. 🕈 Usiamo solo il rapporto $\Delta m_d / \Delta m_s$ (NP si cancella)

hep-ph/0007085 cos2β Δm_d sin2β Δm_{e} 0.5 $sin2\alpha$ 0 -0.5 -0.5 0.5 -1 0

Predizioni per quantità UUT

Limiti sulla NP in MFV(I)

In modelli con un doppietto di Higgs o piccolo tan β (D'Ambrosio et al. hep-ph/0207036) la NP entra come contributo universale ai diagrammi a box

Limiti sulla NP in MFV(II)

Per valori grandi di tan β , la NP cambia diversamente ε_{κ} e i processi di mixing del B. Due diversi δS_0 in questo caso

Uno sguardo al futuro(I)

Abbiamo giocato con uno scenario realistico per il 2010: fino a che punto siamo sensibili alla NP se non osserviamo nessuna deviazione dallo SM?

0.011

Observable	projected values/error	
$sin2\beta$	$0.695 \pm 0.015 (2\%)$	
α[°]	(104± 7)°	
γ[°]	(54± 5)°	
B_K	$0.930 \pm 0.047 (5\%)$	
$F_{B_s} \sqrt{\hat{B}_{B_s}}$ [MeV]	$0.276 \pm 0.014 (5\%)$	
ξ	$1.200 \pm 0.037 (3\%)$	
$ V_{cb} $ -(incl+excl) (10 ⁻³)	$41.7 \pm 0.4 \ (0.9\%)$	
$ V_{ub} $ -(incl+excl) (10 ⁻⁴)	$36.4 \pm 1.6 \ (4.2\%)$	
Δm_d	$0.503\pm0.003(0.6\%)$	
Δm_s	$20.5 \pm 0.3 \text{ ps}^{-1}$	
$m_t[\text{GeV}]$	171 ± 3.0	
λ _{Cab.}	0.2240 ± 0.008	

Uno sguardo al futuro(II)

 $\sigma(\overline{\eta}) = 0.013 \quad \sigma(\overline{\rho}) = 0.018$

Conclusions

crescente numero di vincoli permette una determinazione sempre più precisa dei parametri della CKM 🔸 L'abbondanza di informazioni permette di rinunciare ad alcuni dei vincoli per testare le tecniche di calcolo su reticolo \rightarrow Per la prima volta è possibile vincolare $\overline{\rho}^{\Delta}$ ed $\overline{\eta}$ utilizzandi esclusivamente transizioni ad albero (NP trascurabile) e fornire un riferimento quantitativo ai modelli di NP 🔶 La generalizzazione delle analisi oltre lo SM mostra la presenza di una seconda soluzione non ancora esclusa 🔸 In uno scena<mark>rio MFV, è possibile vincolare</mark>ρed η utilizzando l'analisi UUT e quantificare la minima scala di NP a cui si è sensibili (almeno > 3.4 TeV @95% Prob.) In caso non vedessimo effetti di NP a bassa energia, possiamo compiere con

l'analisi UT un tipo di ricerca complementare a quello di LHC

0

0.5

-0.5