

Incontri di Fisica delle Alte Energie

Catania, 31 marzo 2005 1

## Outline

- Highlights on Bs mixing
- CDF detector and triggers
- B<sub>s</sub> mixing analysis:

   -B<sub>s</sub> signals
   -Lifetime measurement
   -Flavour tagging calibration
  - –**B<sub>d</sub>** mixing
  - –Amplitude scan for  $\Delta m_s$
- Preliminary CDF result

#### • Future prospects

## **B<sup>0</sup> meson flavour oscillations**

Flavour oscillations occur through 2<sup>nd</sup> order weak interactions

$$\Delta m_{q} = \frac{G_{F}^{2} m_{W}^{2} \eta S(m_{t}^{2} / m_{W}^{2})}{6\pi^{2}} m_{Bq} f_{Bq}^{2} B_{Bq} \left| V_{tq}^{*} V_{tb} \right|^{2}$$

∆m<sub>d</sub> (exp.)= 0.510<u>+</u>0.005 ps<sup>-1</sup> (*HFAG 2005*)

 $f_{Bd}^2B_{Bd} = (223 \pm 33 \pm 12) \text{ MeV}$ 

 $f_{Bs}^{2}B_{Bs}^{2} = (276 \pm 38) \text{ MeV}$ 

+  $|V_{td}|$  determined at ~15%



Measuring  $\Delta m_s / \Delta m_d$ determines  $|V_{ts}| / |V_{td}|$ at 5% precision

But in the ratio uncertainties cancels:  

$$\frac{\Delta m_s}{\Delta m_d} = \frac{m_{Bs}}{m_{Bd}} \frac{f_{Bs}^2 B_{Bs}}{f_{Bd}^2 B_{Bd}} \frac{|V_{ts}|^2}{|V_{td}|^2} = \frac{m_{Bs}}{m_{Bd}} \frac{\xi^2}{|V_{ts}|^2}$$

$$\xi = 1.24 \pm 0.04 \pm 0.$$

Lattice-QCD:

## **CKM Unitarity Triangle**

In **SM**, the CKM unitary matrix describes the weak decays of quarks, <u>CPV allowed through phase  $\eta$ </u>

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{ud} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

Unitarity relations:

$$V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0$$

are represented as U.T. (area  $\alpha$  CPV):



$$\left|\frac{V_{td}V_{tb}^{*}}{V_{cd}V_{cb}^{*}}\right| = \frac{\left|V_{td}\right|}{\left|V_{ts}\right|} \times \frac{1}{\left|V_{cd}\right|}$$

$$(\text{ since } |V_{cb}| = |V_{ts}| = A\lambda^2)$$

Measurement of Bs mixing frequency  $\Delta m_s$  gives a precise determination of one side of UT

Sandro De Cecco - INFN Roma

#### Experimental status on $\Delta m_s$



## $\Delta m_{s}$ constraint to U.T.



## SM CKM-fit prediction for ∆m<sub>s</sub>



## The Collider Detector at Fermilab



# The Tevatron pp collider

Superconducting proton-synchrotron:  $36p \times 36p$  bunches, crossing each 396 ns



#### @CDF : 240-360 pb-1 used for B physics lost ~ 100 pb-1 due to COT crisis

# *B Physics at p*<del>*p*</del>*collider*



**BUT:**  $\sigma$ (bb) <<  $\sigma$ (pp) (~65 mb)  $\Rightarrow$  B events have to be selected with specific triggers Trigger requirements: large bandwidth, background suppression, small dead-time

# The CDF II detector



# B physics triggers at CDF II





#### SiliconVertexTracker: the hadronic B trigger



# Searching for B<sub>s</sub> mixing @ CDF



## B<sub>s</sub> time evolution



#### Significance of B<sup>0</sup><sub>s</sub> mixing measurement



## Analysis Strategy

![](_page_16_Figure_1.jpeg)

## Two different B<sub>s</sub> signatures:

![](_page_17_Figure_1.jpeg)

## Hadronic B<sub>s</sub> signals

![](_page_18_Figure_1.jpeg)

## Hadronic $B_s$ signals (2)

![](_page_19_Figure_1.jpeg)

#### Calibration B<sup>0</sup> and B<sup>+</sup> hadronic signals

![](_page_20_Figure_1.jpeg)

## Semileptonic B<sub>s</sub> Signals

$$B_s^0 \to D_s^- l^+ \nu X(D_s^- \to \phi \pi^-)$$

![](_page_21_Figure_2.jpeg)

Sandro De Cecco - INFN Roma

## Semileptonic B<sub>s</sub> Signals (2)

 $B^0_{s} \rightarrow D^-_{s}l^+\nu(D^-_{s} \rightarrow K^{*0}K^-)$ 

 $B^0_{\rm s} \rightarrow D^-_{\rm s} l^+ \nu(D^-_{\rm s} \rightarrow \pi^+ \pi^- \pi^-)$ 

![](_page_22_Figure_3.jpeg)

### Semileptonic B<sup>0</sup> and B<sup>+</sup> Signals

![](_page_23_Figure_1.jpeg)

## Signal yields summary

![](_page_24_Figure_1.jpeg)

## Lifetime bias from SVT trigger

![](_page_25_Figure_1.jpeg)

**Efficiency** as a function of decay time is obtained using **M**onte**C**arlo:

- B production (B p-spectrum from data), decay model (EvtGen)
- full simulation of Detector & Trigger reproducing run-by-run conditions (alignments, beam line, ...)
- •<u>Check:</u> emulate SVT sculpting on  $B^+ \rightarrow J/\Psi K^+$  unbiased sample

## Lifetime in the hadronic B<sub>s</sub> modes

![](_page_26_Figure_1.jpeg)

#### Lifetime in the B<sup>0</sup> and B<sup>+</sup> hadronic modes

![](_page_27_Figure_1.jpeg)

#### Hadronic B-lifetimes results

 $\pm$  (stat)  $\pm$  (syst)

 $\begin{aligned} \tau({\rm B^+}) &= 1.66 \pm 0.03 \pm 0.01 \text{ ps} \\ \tau({\rm B^0}) &= 1.51 \pm 0.02 \pm 0.01 \text{ ps} \\ \tau({\rm B_s}) &= 1.60 \pm 0.10 \pm 0.02 \text{ ps} \end{aligned}$ 

 $\tau(B^+)/\tau(B^0) = 1.10 \pm 0.02 \pm 0.01$  $\tau(B_s)/\tau(B^0) = 1.06 \pm 0.07 \pm 0.01$ 

#### Systematic summary

| Effect                | Variation $(\mu m)$ | Variation $(\mu m)$ |
|-----------------------|---------------------|---------------------|
|                       | $B^0$               | $B_s$               |
| MC input $c\tau$      | negligible          | negligible          |
| $p_T$ reweight        | 1.9                 | 1.9                 |
| Scale Factor          | negligible          | negligible          |
| Bkg $ct$ description  | 1.1                 | 1.1                 |
| Bkg fraction          | 2.0                 | 2.0                 |
| I.P. correlation      | 1.0                 | 1.0                 |
| Eff. parameterization | 1.5                 | 1.5                 |
| $L_{xy}$ significance | negligible          | 2                   |
| $\Delta \Gamma_s$     | -                   | 1.0                 |
| Alignm. + others      | 2.4                 | 2.4                 |
| Total                 | 4.2                 | 4.7                 |

Average lifetimes (exp.):

$$\begin{split} \tau({\rm B^+}) &= \textbf{1.653} \pm \textbf{0.014 ps} \\ \tau({\rm B^0}) &= \textbf{1.534} \pm \textbf{0.013 ps} \\ \tau({\rm B_s}) &= \textbf{1.469} \pm \textbf{0.059 ps} \end{split}$$

Theory prediction:

$$\tau(B^+)/\tau(B^0) = 1.06 \pm 0.02$$
  
 $\tau(B_s)/\tau(B^0) = 1.00 \pm 0.01$ 

## Lifetime in the semileptonic B<sub>s</sub> modes

![](_page_29_Figure_1.jpeg)

#### Perform an unbinned Likelihood fit:

•D<sub>s</sub> meson mass, pseudo decay time, pseudo-decay time resolution

•Integration over K-factor p.d.f.

-Combinatorial background from  $\mathsf{D}_{\mathbf{s}}$  sidebands

## Lifetime in the semileptonic B<sub>s</sub> modes

![](_page_30_Figure_1.jpeg)

### B<sub>s</sub> decay time Resolution

![](_page_31_Figure_1.jpeg)

#### Time resolution effect on mixing

 $(\Delta m \cdot \sigma_t)^2$ 

2

The <u>amplitude of mixing asymmetry is diluted</u> by a factor:  $D_{\sigma}$ = e

![](_page_32_Figure_2.jpeg)

## Flavour tagging

![](_page_33_Figure_1.jpeg)

#### NOT yet used

**<u>Opposite Side K</u>**: due to  $b \rightarrow c \rightarrow s$  it is more likely that a  $B^0$  meson will contain in final state a  $K^+$  than a  $K^-$ . ( $\rightarrow$ PID)

 $\rightarrow$  search for **K** from secondary opposite vtx

<u>SS Pion</u>:  $B_d^0$  is likely to be accompanied close in DR by a  $\pi^+$  from fragmentation <u>SS Kaon</u>: for  $B_s^0$  is likely to be accompanied close in DR by a K+ ( $\rightarrow$ PID)

 $\rightarrow$  search for  $\pi/K$  from Primary vertex

## Calibrating the taggers

•Statistical uncertainty for tagging efficiency:

- –A typical tagging:  $\epsilon$ =0.1,D=0.4, $\epsilon$ D<sup>2</sup>=1.6%
- -**1000** events: εD<sup>2</sup> =1.6<u>+</u>0.7% (44%)
- -100K events: cD<sup>2</sup>=1.60<u>+</u>0.07% (4.4%)

#### •Dividing events into classes based on tagging power improves εD<sup>2</sup>

 $\langle D^2(x) \rangle > \langle D(x) \rangle^2$ 

- → Binned Dilution: needs statistics
   •Solution: Lepton + Displaced track trigger
- ~1.4 M sample rich in semileptonic B
- High B purity
- Lepton Charge = Decay flavor of B

![](_page_34_Figure_11.jpeg)

## Soft lepton tagging

• The soft electron and muon tagger are built in a Likelihood based aproach

•Dilution is binned as a function of the lepton transverse momentum wrt the B jet direction in the opposite hemisphere

![](_page_35_Figure_3.jpeg)

![](_page_35_Figure_4.jpeg)

![](_page_35_Figure_5.jpeg)

IFAE Catania 31-03-2005

## Flavor Tagging Summary

![](_page_36_Figure_1.jpeg)

•Measure the 5 taggers effective Dilutions in the  $\ell$ + track calibration sample:

 $\rightarrow$  Predict  $\varepsilon D^2$  event by event

 $\rightarrow$  Test in  $\Delta m_{d}$  measurement  $\rightarrow$ 

| Tag type          | εD² (%)      |
|-------------------|--------------|
| Muon              | (0.70±0.04)% |
| Electron          | (0.37±0.03)% |
| 2ndary vtx        | (0.36±0.02)% |
| Displaced track   | (0.36±0.03)% |
| Highest p jet     | (0.15±0.01)% |
| Total (exclusive) | ~1.6%        |

## B<sup>0</sup> mixing in the hadronic channels

- Validation of the flavor tag calibration using  $\mathsf{B}^0$  and  $\mathsf{B}^+$  sample
- $B^0 \rightarrow D\pi, B^+ \rightarrow D^0\pi$
- $\ B^0 \rightarrow J/\psi K^{*0}, \ B^+ \rightarrow J/\psi K$
- Event by event predicted dilution D from the flavor tag calibration
  - $B^0: e^{-t/\tau} (1 \pm S \cdot D \cdot \cos(\Delta m_d t))$

 $B^+:e^{-t/\tau}(1\pm S\cdot D)$ 

- Fit the "Dilution scale factor" S
- =1 if the tag calibration is correct.
- 5 scale factors for 5 tag types

 $\rightarrow$  Scale factors are then used for <u>**B**</u><sub>s</sub><u>mixing</u> analysis in the hadronic

![](_page_37_Figure_11.jpeg)

## B<sup>0</sup> mixing in the semileptonic channels

![](_page_38_Figure_1.jpeg)

![](_page_38_Figure_2.jpeg)

– Measure  $\Delta m_d$ 

Extract 5 dilution scale factors

 $\rightarrow$  The dilution scale factors are used for semileptonic <u>**B**</u><sub>s</sub> mixing</u> analysis

## B<sup>0</sup> mixing results

|                         | HADRONIC                             | SEMILEPTONIC                         |
|-------------------------|--------------------------------------|--------------------------------------|
| Δm <sub>d</sub>         | (0.503±0.063±0.015) ps <sup>-1</sup> | (0.498±0.028±0.015) ps <sup>-1</sup> |
| Total εD <sup>2</sup>   | (1.12±0.23)%                         | (1.43±0.09)%                         |
| Dilution scale <b>S</b> |                                      |                                      |
| Muon                    | 0.83±0.10±0.03                       | 0.93±0.04±0.03                       |
| Electron                | 0.79±0.14±0.04                       | 0.98±0.06±0.03                       |
| Vertex                  | 0.78±0.19±0.05                       | 0.97±0.06±0.04                       |
| Track                   | 0.76±0.21±0.03                       | 0.90±0.08±0.05                       |
| Jets                    | 1.35±0.26±0.02                       | 1.08±0.09±0.09                       |

- $\Delta m_d$  consistent with WA: 0.510±0.005 ps<sup>-1</sup>
- Total εD<sup>2</sup>: 1.1—1.4%
- All dilution scale factors consistent with 1
- Hadronic: 15~25% uncertainty
- Semileptonic: 5~15% uncertainty

## Amplitude scan method, ex.: the B<sup>o</sup> case

2

Amplitude

**CDF Run II Preliminary** 

data  $\pm$  1.645  $\sigma$  (stat. only)

--- 1.645 σ

- data  $\pm 1\sigma$   $\blacktriangle$  95% CL limit 0.4 ps<sup>-1</sup>

o sensitivity

10

27.5 ps<sup>-1</sup>

20

≈ 355 nh

 $L \approx 355 \text{ pb}^{-1}$ 

 $\Delta m_{d} [ps^{-1}]$ 

Hadronic B<sup>0</sup>

•Standard cosine fit not very sensitive for high  $\Delta m$  (i.e. the B<sub>s</sub> case) •Method: Introduce "Amplitude" A in Likelihood:

$$L_{sig}^{t} = \frac{1}{\tau} e^{-t/\tau} (1 \pm \mathbf{A} D \cdot S \cdot \cos(\Delta m t))$$

![](_page_40_Figure_3.jpeg)

- Fit the amplitude **A** fixing  $\Delta \mathbf{m}$ 
  - $\rightarrow$  Amplitude: A, uncertainty:  $\sigma_{A}$

![](_page_40_Figure_6.jpeg)

## $\Delta m_s$ amplitude scan road map

#### <u>"Blind Analysis":</u>

- Scrambling flavor tag decision  $\leftarrow \rightarrow$  multiply the tag decision x (-1)<sup>Run Number</sup>
- Perform the blind amplitude scan to the Bs candidates:
- Amplitude A is randomized in the blind scan but:  $\sigma_A$  is not biased
- Evaluate sensitivity  $\rightarrow$  exclude  $\Delta m_s$  range where (1-A)>1.645•  $\sigma_A$  (95% C.L.)
- <u>Systematic uncertainty</u>
- Following the prescription by Moser, et.al. (NIM A 384 491)
- We use toy Monte-Carlo sample generated at each value of  $\Delta m_s$  in the amplitude scan
- Toy MC includes all variables and distributions used in Likelihood
- -Take shifts in amplitude ( $\Delta A$ ) and statistical uncertainty ( $\Delta \sigma_A$ ).
- Derive systematic using formula

$$\sigma_A^{syst} = \Delta A + (1 - A) \frac{\Delta \sigma_A}{\sigma_A}$$

- Open the box after:
- Sensitivity estimation
- Systematic evaluation

![](_page_41_Figure_16.jpeg)

## Systematic Uncertainties

![](_page_42_Figure_1.jpeg)

\*\*Systematic errors are negligible with respect to statistical in both cases\*\*

### Amplitude Scan result (semileptonic)

![](_page_43_Figure_1.jpeg)

#### Amplitude Scan result (hadronic)

![](_page_44_Figure_1.jpeg)

## **CDF Combined Result**

![](_page_45_Figure_1.jpeg)

## **CDF+World Combined Result**

- World Average (LEP, SLD, CDF run I)
- Sensitivity: 18.2 ps<sup>-1</sup>
- Limit: 14.5 ps<sup>-1</sup>

- World Average + CDF Run II
- Sensitivity: 18.6 ps<sup>-1</sup>
- Limit **14.5 ps**-1

![](_page_46_Figure_7.jpeg)

#### Future perspectives

#### With the same data:

- Add new tagging algorithm Same Side Kaon Tag
- Add more channels
- Add signals from other triggers
- Improve decay time resolution with PV event by event

#### With new data:

- Increased Luminosity
- Use new trigger strategies

•2 SVT Tracks + tagging muon at trigger level (already in place since summer 2004)

#### Other channels, example

$$B_s^0 \rightarrow D_s^- \pi^+ \pi^- \pi^+$$

- •133±23 Bs candidates
- •Already used for lifetime
- •But not for mixing

![](_page_48_Figure_5.jpeg)

## Same side Kaon tagging

Exploits the charge correlation between the b quark and the leading product of b hadronization.

$$\begin{bmatrix} \mathbf{b} & \mathbf{b} \\ \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{c} & \mathbf{c} \\ \mathbf{c} & \mathbf{c} & \mathbf{c} \\ \mathbf{c} & \mathbf{c} & \mathbf{c} \end{bmatrix} \pi^{-} \mathbf{K}^{*0}$$

Already used in  $\Delta m_d$  measurement, gives an  $\epsilon D^2 = 1.1 \pm 0.4 \%$ 

$$\begin{bmatrix} \mathbf{b} & \mathbf{b} \\ \mathbf{c} & \mathbf{c} \\ \mathbf{c} & \mathbf{c} \\ \mathbf{c} \\ \mathbf{c} \\ \mathbf{d} \\ \mathbf{s} \end{bmatrix} \pi^{+} \mathbf{K}^{+}$$

 $\mathsf{B}^{+}$  case is complicated by the contribution of excited  $\mathsf{B}_{\mathsf{d}}$  and  $\mathsf{B}_{\mathsf{s}}$  states

$$\begin{bmatrix} \mathbf{b} \\ \mathbf{c} \\ \mathbf{c}$$

SS Kaon tag possible with PID "Simple case": so excited states expected Issues:

•Need to know  $\varepsilon D^2$  to set a limit on  $\Delta m_d$ 

•Underlying event backgound

# Is MC describing the data?

One possible way to solve the issue of having a prediction for the SSKT dilution is to extract it from MC.

 $\rightarrow$ Compare <u>DATA</u> with <u>Pythia</u> b-antib production and hadronization with all the processes on, underlying event "tune A" from HF x-sec. CDF data.

![](_page_50_Figure_3.jpeg)

Look at the charged tracks in a cone of  $\Delta R=0.7$  around the  $B_s$  (no PID)

First order good agreement

## MC-data comparison with PID

![](_page_51_Figure_1.jpeg)

# Short term realistic scenario

![](_page_52_Figure_1.jpeg)

•Start to "eat" interesting  $\Delta m_s$  range combining the 2 analysis

# **BACKUP slides**

## Systematics Summary Table (Hadronic)

| source                                | selected $\Delta m_s$ scan points |       |       |       |       |
|---------------------------------------|-----------------------------------|-------|-------|-------|-------|
|                                       | 0.0                               | 5.0   | 10.0  | 15.0  | 20.0  |
| $B_s \to D_s K$ level                 | 0.019                             | 0.024 | 0.030 | 0.037 | 0.047 |
| dilution scale factors                | 0.143                             | 0.168 | 0.205 | 0.254 | 0.314 |
| dilution templates                    | 0.119                             | 0.147 | 0.178 | 0.211 | 0.246 |
| fraction of $\Lambda_b$               | 0.014                             | 0.009 | 0.009 | 0.011 | 0.012 |
| Punzi term for $\sigma_{ct}$          | 0.009                             | 0.008 | 0.022 | 0.033 | 0.030 |
| dilution of $B \to DX$                | 0.025                             | 0.001 | 0.000 | 0.000 | 0.001 |
| $\sigma_{ct}$ scale factor            | 0.000                             | 0.024 | 0.061 | 0.090 | 0.144 |
| usage of L00 in bias curve            | 0.001                             | 0.001 | 0.001 | 0.001 | 0.001 |
| Bs lifetime uncertainty               | 0.001                             | 0.001 | 0.001 | 0.001 | 0.001 |
| reweighted $p_t$ spectrum             | 0.001                             | 0.001 | 0.001 | 0.001 | 0.001 |
| non-Gaussian tails in ct resol.       | 0.001                             | 0.027 | 0.052 | 0.078 | 0.104 |
| neglect $B^0$ in fit                  | 0.039                             | 0.036 | 0.033 | 0.031 | 0.028 |
| effect of $\Delta\Gamma/\Gamma = 0.2$ | 0.028                             | 0.028 | 0.028 | 0.028 | 0.028 |
| Total systematic                      | 0.195                             | 0.232 | 0.289 | 0.357 | 0.443 |
| Statistical                           | 0.393                             | 1.129 | 1.010 | 2.652 | 5.281 |

## Systematics Summary Table (Semileptonic)

| Source                              | selectex $\Delta m_s$ scan points |       |       |       |       |
|-------------------------------------|-----------------------------------|-------|-------|-------|-------|
|                                     | 0.0                               | 5.0   | 10.0  | 5.0   | 20.0  |
| Prompt background fraction          | 0.044                             | 0.065 | 0.102 | 0.145 | 0.143 |
| Prompt background dilution          | 0.014                             | 0.040 | 0.027 | 0.062 | 0.157 |
| Prompt background shape             | 0.015                             | 0.010 | 0.019 | 0.054 | 0.057 |
| Physics background fraction         | 0.134                             | 0.078 | 0.093 | 0.096 | 0.103 |
| Sample composition                  | 0.002                             | 0.015 | 0.022 | 0.021 | 0.039 |
| Dilution scale factors              | 0.061                             | 0.071 | 0.068 | 0.070 | 0.069 |
| $\sigma_{ct^*}$ scale factor        | 0.002                             | 0.012 | 0.033 | 0.047 | 0.065 |
| SVT bias curve                      | 0.002                             | 0.001 | 0.005 | 0.005 | 0.012 |
| Primary vertex                      | 0.007                             | 0.003 | 0.003 | 0.005 | 0.007 |
| $B_s$ lifetime                      | 0.001                             | 0.011 | 0.014 | 0.020 | 0.026 |
| non-Gaussian tails in ct resol.     | 0.005                             | 0.047 | 0.049 | 0.052 | 0.078 |
| effect of $\Delta\Gamma/\Gamma=0.2$ | 0.012                             | 0.005 | 0.005 | 0.005 | 0.009 |
| Total Systematics                   | 0.156                             | 0.142 | 0.167 | 0.220 | 0.273 |
| Statistical                         | 0.159                             | 0.406 | 0.856 | 1.654 | 3.364 |

## **Decay Time Resolution**

Decay vertex error matrix overall correction for mis-knowledge of hit resolution

 $\rightarrow$  Apply a scale factor **S** to  $\sigma(ct)$  from vertex fit:

- Use large data control sample, real Ds + track from Primary Vertex
- Parameterize **S** in terms of several variables ( $P_T$ , Isolation,...)
- Correct  $\sigma(ct)$ ' = S· $\sigma(ct)$  event by event.

![](_page_56_Figure_6.jpeg)

## B<sub>d</sub> mixing with Same Side $\pi$ tagging

![](_page_57_Figure_1.jpeg)

# **Tevatron plans**

![](_page_58_Figure_1.jpeg)

RECYCLER had a first successful test

Plans beyond FY 05 depends on Recycler

| Year  | Base plan<br>luminosity/yr<br>(fb <sup>-1</sup> ) | Design plan<br>Luminosity/yr<br>(fb <sup>-1</sup> ) |
|-------|---------------------------------------------------|-----------------------------------------------------|
| FY02  | 0.08                                              | 0.08                                                |
| FY03  | 0.20                                              | 0.22                                                |
| FY04  | 0.31                                              | 0.38                                                |
| FY05  | 0.39                                              | 0.67                                                |
| FY06  | 0.50                                              | 0.89                                                |
| FY07  | 0.63                                              | 1.53                                                |
| FY08  | 1.14                                              | 2.37                                                |
| FY09  | 1.16                                              | 2.42                                                |
| Total | 4.41                                              | 8.56                                                |

٠

•

## **Tevatron performances**

![](_page_59_Figure_1.jpeg)

#### **CDF II tracking system**

![](_page_60_Figure_1.jpeg)

**LAYER 00**: 1 layer of radiation-hard silicon at very small radius (1.5 cm)

#### **CDF** Particle IDentification

![](_page_61_Figure_1.jpeg)