Rivelatori per il Linear Collider

Erika Garutti

DESY

ILC: il linear collider un detector per ILC Componenti: - rivelatori di vertice - tracciatori - calorimetri

A Cool Machine

Energia: 500 – 800 GeV Luminosita': 3-6 10³⁴/cm²/s

Struttura a bunch del fascio:

Raccomandazioni sulla tecnologi Cavita' superconduttive a radiofrequenza Frequenza 1.3 GHz

Goal:

Bunch crossings at 337 ns

Bunch trains at 5 Hz

> Minimizzare il numero di bunches integrati alta velocita' di lettura: 25-50 MHz

30 March 2005

200 ms

Macchine Leptoniche vs Adroniche

Linear Collider

"bassa" occupancy "basso" background "basso" rate

Macchine adroniche

"alta" occupancy "alto" background "alto" rate

precisione ragionevole ricostruzione parziale bilancio in p_t

altissima precisione attenzione a tutte le particelle bilancio energetico

Particelle cariche e neutre
 importanza al sistema e non ai singoli sub-detectors

R&D per il Rivelatore:

Spingere al limite le tecnologie di precisione per ogni detector
Ottimizzazione della sinergia tra detectors

30 March 2005

Richieste della fisica

- a) risoluzione di massa di due jet paragonabile all' ampiezza naturale di W e Z, per la corretta un'identificazione dello stato finale
- b) Eccellente efficienza e purezza in flavor-tagging (per b- and c-quarks e possibilmente s-quarks)
- c) Risoluzione in momento capacita' di ricostruire in processi di Higgsstrahlung la recoil-mass di due muoni con risoluzione migliore dell spread in energia del fascio
- d) Ermeticita' (assenza di fessure e copertura della regione a bassi angoli in avanti) alta precisione nella determinazione del momento mancante

IFAE Catania - E. Garutti

Un nuovo concetto per il detector

Particle Flow richiede:

- ricostruzione delle singole particelle
- separazione delle singole tracce

Meno importante:

risoluzione in energia delle particelle

Richieste sul Detector:

- Buon tracciamento in jet densi
- Eccellente granularita' nell'ECAL
- -Buona granularita' nell'HCAL
- Eccellente connessione tra tracciatori / ECAL / HCAL

Notevole impegno in R&D Diversi possibili approcci Molti gruppi coinvolti da tutto il mondo

Non e' troppo presto se vogliarno per arrivare in tempo!!

Ultime novita'

Marzo 18-22: in LCWS05 Collezione delle ultimissime novita' su:

- detector concept
- detector R&D
- dead lines and schedules

2005 INTERNATIONAL LINEAR COLLIDER WORKSHOP

Stanford, California, USA 18-22 March, 2005

http://www-conf.slac.stanford.edu/lcws05/default.htm

➔ Conciso sommario mirato soprattutto alle novita' sul mercato

IFAE Catania - E. Garutti

Tre diversi approcci per il detector

Confronto delle diverse opzioni

Principali differenze: dimensione e rapporto lunghezza/larghezza Importante: raggio interno del ECAL: definisce la dimensione totale

- Figura di Merito (ECAL): Barrel: $B R_{in}^2 / R_m^{effective}$ Endcap: "B" Z²/ R_m^{effective} R_{in}: Inner radius of Barrel ECAL
 - Z : Z of EC ECAL front face

9

Tracciatori interni e Rivelatori di vertice

Requisiti per il detector

- Eccellente precisione sul singolo punto (< 4 μ m)
- Eccellente risoluzione del parametro d'impatto ($5\mu m \oplus 10\mu m/(p sin^{3/2}\theta)$)
- Transparenza (~0.1% X₀ per strato / 4-5 strati)
- Ricostruzione delle tracce (identificazione delle tracce usando il solo VD)

→ unanime accordo per tutte le configurazioni: Pixel Detector

1) CCD a lettura parallela

- principio di funzionamento testato @ SLD
 → 5 MHz x 96 ch.
 → 3.9 µm space point resolution
- velocita' di lettura per bunch spaziati di 250 ns: 50MHz clock

→ lettura a colonne parallele successo del presente R&D → 25MHz con 100 electrons noise @ 1.9V clocking

 minimizzare la quantita' di materiale spessore dei sensori: 50 μm (20 attivi + supporto) materiale per strato: <0.1% X₀

CPC1: 750x400 pixels, 20x20 µm² Bump bonded by VTT to readout CPR1 Various sized (up to 92mmx15mm) CPC2 detector chips

IFAE Catania - E. Garutti

 Separate amplifier and readout for each column

LCFI (Bristol, Glasgow, Lancaster, Liverpool, Oxford, RAL)

2) ISIS: event storage

• RF pickup is a concern for all sensors converting charge into voltage during the bunch train;

• The In-situ Storage Image Sensor (ISIS) eliminates this source of Electromagnetic Interference:

Charge collected under a photogate;

Charge transferred to 20-pixel storage CCD in situ, 20 times during the 1 mslong train;

Conversion to voltage and readout in the 200 ms-long quiet period after the train, RF pickup is avoided;

* 1 MHz column-parallel readout is sufficient;

3) Area ridotta dei pixels Array Designs

High-speed arrays

- Designed for quick response.
 - Threshold detection only.
 - Large pixels (~50 x 50 μm).
- Transmits X,Y location and time stamp of impact.

High-resolution arrays

- Designed for resolution and querying.
 - Smaller pixel size (~5 x 5 μ m).
 - Random access addressability.
 - Records intensity.
- Provides intensity information only for pixel region queried.

Tracciatore Centrale

Due tecnologie studiate per il detector di ILC

Tracciatore gassoso (TPC)

- Basato sull'esperienza positiva di: PEP-4, ALEPH, ALICE, DELPHI, STAR, ...
- Grande numero di punti ricostruiti, facilita la ricostruzione delle tracce
- dE/dx \Rightarrow particle ID, bonus
- Minimo materiale, importante in calorimetria
- Tracciamento possibile a grandi raggi

Tracciatore a Silicio

- Eccellente precisione sul singolo punto consente di minimizzare il volume totale
- Robusto in backgrounds intermittenti linear collider diverso dallo storage ring

IFAE Catania - E. Garutti

Risoluzione del singolo punto

Events in P5 with \approx B = 0 T	25 cm drift distance B = 5.3 T
track width = 2.6 mm	track width = 0.37 mm

University of Victoria, DESY, Sacley, Orsay, Berkeley

→ Tre camere GEM lette da pads di 2.2x6.2mm²

Risoluzione del singolo punto peggiore delle previsioni

Possiblili cause: metodo di ricostruzione, pads 10% piu' grandi che in simulazione

➔ Effecto del campo magnetico sulla risoluzione di singolo punto

- E. Garutti

Tracciatori a Silicio

5 strati di rivelatori di vertice a pixel 5 strati di tracciatori a Si-strip

> Key R&D: FE and readout chip prototype (.18μm UMC)16 channel pream, shaper. ADCPromettenti test in laboratorio

SID/SiLC

Sistema Calorimetrico

ECAL: calorimetro al silicio-tungsteno (SiW) :

- Lettura analogica di silicon pads
- Tungsteno : $X_0 / \lambda_{had} = 1/25$, $R_{Moliere} \sim 0.9$ cm
- Segmentazione laterale: 1cm ~ R_{Moliere}
- Segmentazione longitudinale: 40 strati (24 X₀)

HCAL: digitale vs. analogico (questione aperta): Struttura a sandwich con strati di acciaio e

- HCAL Analogico (Tile HCAL)
 Minore segmentazione laterale 5x5 cm² (motivata dai costi)

 Materiale attivo: scintillatore
- HCAL Digitale

Maggiore segmentazione laterale 1x1 cm² ma con lettura digitale Materiale attivo: - scintillatore

- gas (RPCs, GEM)

30 March 2005

IFAE Catania - E. Garutti

ECAL R&D in CALICE

14 layers, 2.1mm thick

•30 strati di Tungsteno a spessore variabile
•Alternati a strati attivi di silicio
•Front end chip sulla PCB board

ECAL R&D in Japan

Tile/fiber

- struttura a sandwich di scintillatori e piombo
- rapporto 1:4 → compensazione
- lettura combinata di 5 strati
- dimensione delle tile: 4x4 cm²

Scintillator Strip Array

- lettura a strip combinando piani in x e y
- dimensione delle strip: 20cm x 1cm x 2mm
- struttura a sandwich con 4mm di piombo

ECAL R&D in Japan

Lettura del segnale luminoso attraverso Wave Length Shifting fibers connesse a photo-detector → Da operare in alti campi magnetici! Possibilita' di lettura con: HPD, HAPD, EBCCD

HPD (HAPD)

- Photo-cathode + PIN diode (or APD) with a vacuum gap in between
- Insensitive to the axial magnetic field
- HV between photocathode and PIN diode
- Gain ~ 3000 (x100) with photo-cathode @ -11 kV

Electron Bombarded CCD

→ Photons detected on a photo-cathode
 → Released electrons are accelerated
 across a gap and impact on the back side
 of a back-thinned CCD.

→Gain ~ 500

→ single photo-electron peak visible

Test beam @ KEK

ECAL R&D in LCCAL

Ibrido Silicio-scintillatore

vantaggi del Si-W: alta granularita'
Erec da Scintillatore+WLS fibers

- ~factore 10 < # canali

Sc-VV-Sc-VV-Si-VV-Sc-VV

b

Fibre raggruppate in gruppi di 25x4 consentono segmentazione longitudinale in 4 strati

Kansas

3 slots per l'inserimento di piani di Si pad (Motherboard) 30 March 2005 IFAE Catania - E. Garutti

HCAL: analogico o digitale?

HCAL Digitale

- piccole celle: imagining HCAL
- registrate solo le celle con segnale
- nessuna informazione di ampiezza

Questioni aperte per R&D:

test del principio di funzionamento readout economico su larga scala algoritmo per l'analisi da sviluppare

Tile (analogico) HCAL

registra posizione e ampiezza

Questioni aperte per R&D:

lettura della luce ottimizzazione del sistema algoritmo per l'analisi da sviluppare

HCAL: analogico o digitale?

bassa E → digitale meglio di analogico grazie alla soppressione delle fluttuazioni Landau

alta E → analogico meglio di digitale
 Possibili soluzioni:
 soglie multiple (semi-digital)

Digitale: richiede lettura in piccole celle (~1cm)

- ➔ piccole scintillator tiles
- ➔ gas + piccoli pad readout

HCAL Digitale:

- Iettura del segnale con: Resitive Plate Chambers or Gas Electron Multiplier
- facile da costruire, economico
- alta granularita': 1cm²

30 March 2005

Altri aspetti da considerare...

Per limiti di tempo non e' stato possibile discutere:

- Very forward detectors:
 misurare la luminosita'
 very forward e / γ → ermeticita'
- Tail catcher / muon detector
 - instrumented iron yoke
 - migliorare la risoluzione dell'HCAL Tecnologie: lunghe barre scintillanti, RPC
- Molti altri progetti di R&D per i vari detector

Conclusioni & Piani Futuri

- Enorme progetto di R&D
 - → creato il primo concetto per un detector per ILC
- Il lavoro continua → con l'ambizione di proporre un detector design a fine 2007

• Molte sfide stimolanti per i prossimi anni

Backup slides

30 March 2005

IFAE Catania - E. Garutti

- Primo prototipo testato in testbeam di DESY
- Pixel size 20 x 30 μ m²,
 - →64 x 128 pixels
- Spessore 50 µm con \rightarrow S/N = 40
- Rad. Hardness testata fino a 1 Mrad (⁶⁰Co)
- Readout a 100 MHz possibile con noise accettabile
- Basso consumo energetico (5W per detector a 5 strati)

MPI Munich, MPI Halle, U. Bonn, U. Mannheim

Catania - E. Garutti

50 µm

Eventi al Linear Collider

 Semplici eventi (rispetto al collider adronico)

➔ permette la ricostruzione delle singole particelle

 La ricostruzione della massa dei bosoni pesanti impone richieste sulla risoluzione in energia dei jet

 $e^+e^- \rightarrow WW \, v\bar{v} \qquad e^+e^- \rightarrow ZZ \, v\bar{v}$

30 March 2005

IFAE Catania - E. Garutti

Ô%/√E

100

MAPS

Elettronica di lettura integrata in ogni chip

 operazione piu' semplice di CCD
 no clocking-out of charge: intrinsically radiation harder

MA

maggiore quantita' di materiale (?)
maggiore consumo energetico

30 March 2005

Testbeam results

S/N ~ 24

- 20 µm strato sensibile

- 20, 30, 40 µm pitch

R&D paralleli: FAPS (RAL)

Alternativa per active pixel con
10-20 storage capacitors / pixel
→ all'inizio dello sviluppo

Gas Electron Multiplier

- •50 µm kapton foil, double sided copper coated
- •75 µm holes, 140 µm pitch
- •GEM voltages up to 500 V yield 10⁴ gas amplification

a)

Readout concept: Analog vs Digital

Very Front End Electronics

18-channel Chip 0.8 µm CMOS¹

