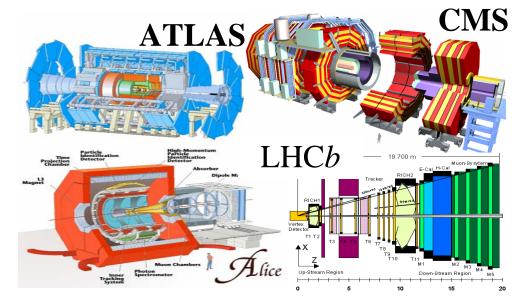
Tecniche di analisi dati a LHC

Tommaso Boccali (SNS Pisa)

II Problema

 Dimensione del problema mai affrontata prima, sia dal punto di vista della necessita' di storage che di calcolo


	ALEPH 1995	CDF 2004	CMS 2007
Dimensione dei dati raccolti	1 TB = 1000 GB	1 PB = 1000 TB x1000	~10 PB x10
Capacita' di calcolo (SI2k)	<<100k	1.4 M x50	>25 M x20

Ultime stime ... (LHCC)

- Per i 4 esperimenti, in totale:
 - CPU ~ 100MSI2k
 - ~ 100000 CPU attuali
 - ~ 25000 CPU 2007
 - Disco ~ 40 PB
 - 100.000 HD da 400 GB
 - Nastro ~ 40 PB

Quali soluzioni sono possibili per il calcolo a LHC?

Soluzioni?

- SuperComputer
 - BlueGene e' il supercomputer piu' potente (di cui sia stata svelata l'esistenza)
 - equivale a ~ 10000 CPU attuali
 - costa 250 M\$, se ne occupano in 100
 - ce ne servirebbero 10, costo simile all'acceleratore
 - e non da' soluzioni riguardo allo storage

The state of the s

2. Mega farm di PC

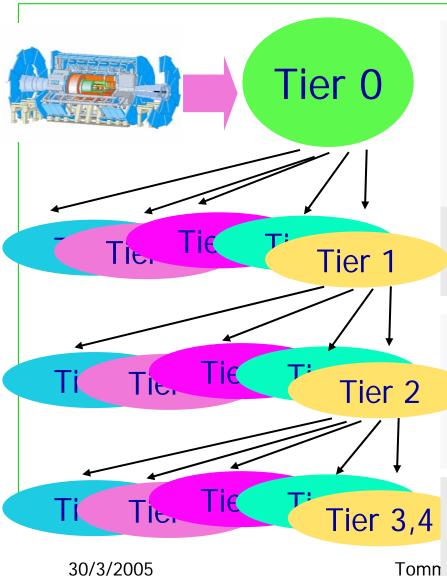
 approccio alla Google, farm piu' grande di cui si abbia conoscenza ~ 10000 PC in un singolo capannone

MegaFarm

- Naturalmente potrebbe funzionare, ma
 - richiederebbe di riunire tutte le persone che si occupano di calcolo a LHC al CERN
 - richiederebbe che le funding agencies fossero d'accordo a pagare una struttura CERN

Altre soluzioni?

MONARC



- Models of Networked Analysis at Regional Centres for LHC
 - definisce un modello di analisi basati su
 - calcolo distribuito
 - una gerarchia di centri di calcolo
- 2001 Hoffman Review definisce <u>MONARC</u> come baseline per il calcolo a LHC

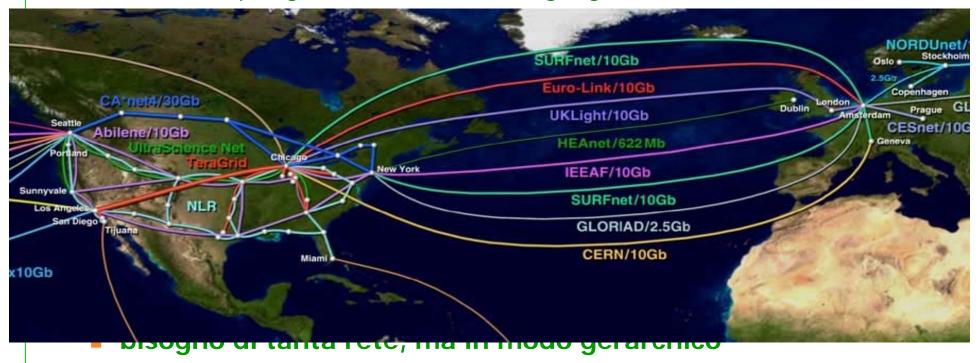
RC

CERN

Storage della copia master dei dati RAW calibrazioni "veloci" e monitoring una prima ricostruzione
Si dividono una copia di "backup" dei RAW ricostruzioni e calibrazioni piu' accurate

gran parte dell'attivita' di analisi/simulazione avverra' qui

coprono I bisogni di una comunita' ~ 50 utenti


ogni altra risorsa da piccolo cluster universitario, a macchina desktop, a portatile ...

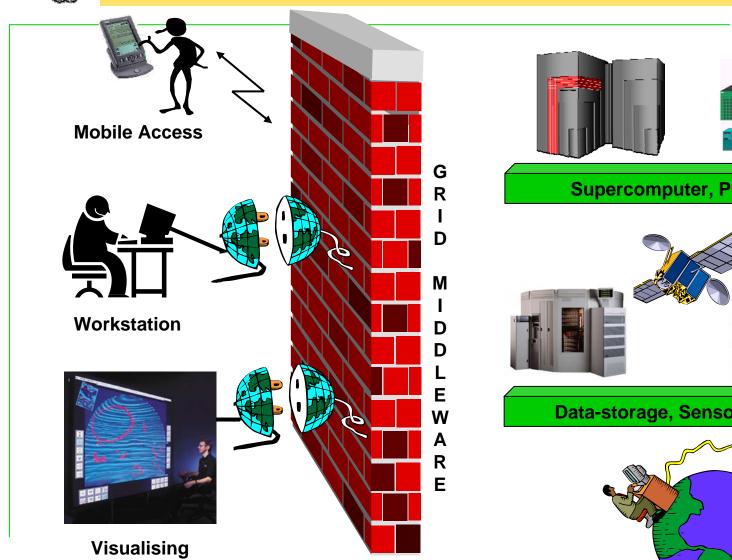
Limitandosi ai primi livelli ...

- Si stima una moltiplicazione x5 ad ogni livello
 - ~5 Tier1, per grandi nazioni e zone geografiche

Maggiori problemi di gestione?

Fortunatamente, nel frattempo si e' avuta un'evoluzione per gran parte inaspettata ai tempi di MONARC – la nascita delle GRID

- soluzione per il problema della complessita'
- ancora in parte da dimostrare, ma ... vediamo!

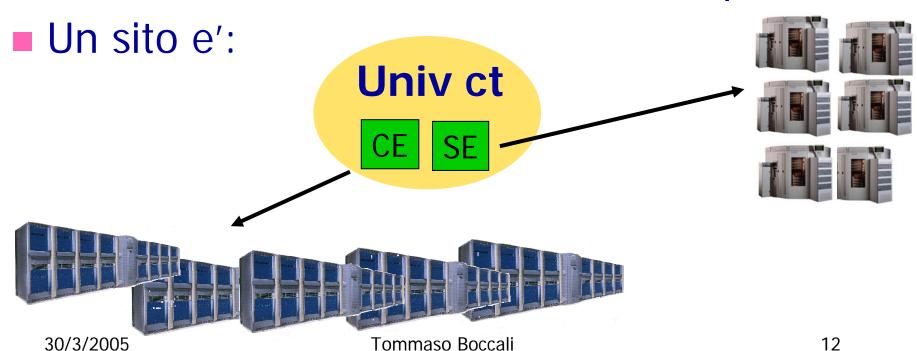

semplificazione della gestione

- La definizione di GRID viene dalla similitudine con la rete elettrica
 - quando attaccate un elettrodomestico, aspettate che funzioni senza che dobbiate specificare quale centrale elettrica usare, quale strada debba fare il segnale ecc
- il calcolo per nostra sfortuna al momento funziona in modo diverso:
 - dovete loggarvi su di una macchina che accetti di lavorare per voi, cercare il file da processare e copiarcelo, recuperare il risultato ..
- ma con la GRID ...

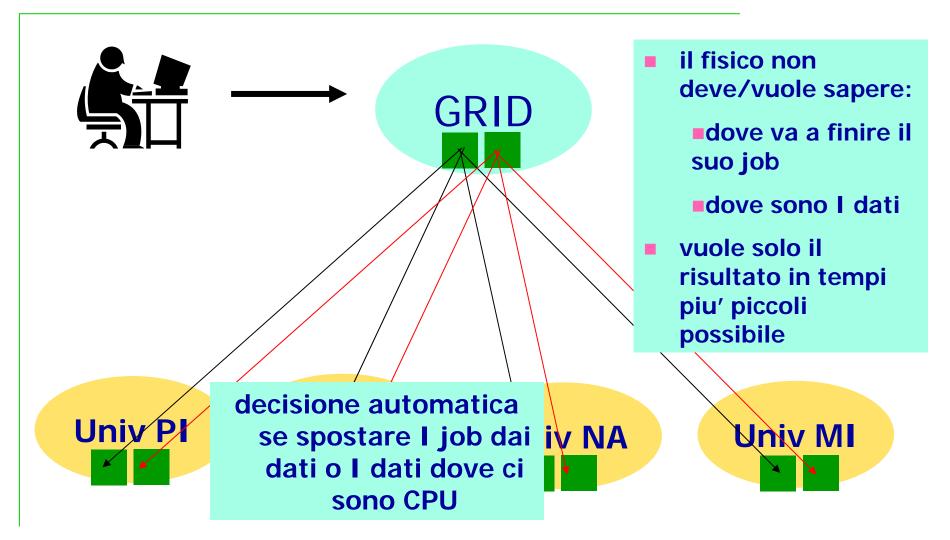
Supercomputer, PC-Cluster

Data-storage, Sensors, Experiments

Internet, networks


30/3/2005

Tommaso Boc


La GRID ben si adatta al modello proposto da MONARC, in quanto permette accesso trasparente a risorse sia di CALCOLO (farm) che di STORAGE (i famosi PB di cui prima)

Su scala geografica

Cosa Esiste?

Premessa:

parlo solo della rete LCG, CrossGri d

pensata per esperimenti LHC

ci sono altre realta' altrettanto interessanto (alien, grid3, nordugrid...)

the globus project"

LCG

atalau

gLite sostituira' a bre

Stato Attuale:

Grid LCG

ba.infn.it	4	352	16	95%	78	34	83%	216K	25	50	88%	313.4 Gb 701.3 Gb 55%
bo.infn.it	8	84	48	43%	10	0	17%	81K	17	34	26%	1.8 Tb 2.6 Tb 32*
ca.infn.it	4	56	0	100%	14	28	100%	48K	9	14	100%	132 Gb 142.1 Gb 7%
cnaf.infn.it	17	40	0	100%	10	33	100%	48K	5	10	8.0%	1.5 Tb 1.7 Tb 10%
cr.cnaf.infn.it	13	8752	5921	32%	442	203	7%	2M	177	354	0%	56.1 Tb 87.8 Tb
ct.infn.it	4	224	88	613	26	15	23%	131K	13	26	12%	1.4 Tb 2 Tb 32%
dma.unina.it	4	8	8	0%	0	0	0%	6K	2	2	1%	
egee.unile.it	4	8	0	100%	2	25	100%	-	-	-	-	
esrin.esa.int	2	24	24	0%	0	0	0%	-	-	-	-	436.8 Gb 436.8 Gb • **
fe.infn.it	4	56	0	100%	14	10	100%	53K	7	14	0%	3.5 Gb 25.6 Gb 86%
fi.infn.it	4	144	132	8%	3	4	2%	107K	9	18	12%	720.9 Gb 722.1 Gb • *
le.infn.it	4	8	8	0%	0	0	0%	3K	1	2	0%	15.6 Gb 17.4 Gb 10%
Inf.infn.it	4	24	0	100%	6	63	100%	34K	3	6	100%	440.2 Gb 1.1 Tb 628
Inl.infn.it	6	1082	56	95%	172	43	75%	967K	98	196	86%	187.3 Gb 1.3 Tb 86%
mi.infn.it	5	270	245	9%	5	0	2%	294K	32	64	3%	1.5 Tb 3 Tb
na.infn.it	8	144	24	83%	30	197	56%	182K	18	36	81%	337 Gb 870.3 Gb 618
oat.ts.astro.it	4	12	12	0%	0	4	0%	5K	2	1	5 0%	28.9 Gb 34.3 Gb 16%
pd.infn.it	6	584	20	97%	92	259	82%	496K	50	102	86%	9.6 Tb 10.1 Tb 5%
pg.infn.it	4	104	104	0%	0	0	0%	103K	13	26	0%	214.6 Gb 216.5 Gb 1%
pi.infn.it	11	240	0	100%	58	42	100%	105K	17	34	88%	105.9 Gb 123.8 Gb 15%
roma1.infn.it	8	208	0	100%	52	48	100%	261K	26	52	96%	518.7 Gb 973.2 Gb
roma2.infn.it	4	32	0	100%	8	21	100%	67K	4	14	635	1.1 Tb 1.1 Tb 3%
sns.it	4	40	40	0%	0	0	0%	11K	2	2	0%	31.4 Gb 34.3 Gb 9%
to.infn.it	6	280	5	98%	55	25	92%	297K	28	56	5%	28.7 Gb 1.9 Tb 99%
ts.infn.it	4	8	0	100%	2	28	100%	4K	1	2	100%	28 Gb 35.1 Gb 20%

ppimanaciak											1.1.10	1.5 15	
pp.rl.ac.uk	2	20	79	30	89%	99%	-	-	-	-	494.6 Gb	517.9 Gb	4%
prd.hp.com	1	5	0	0	0%	0%	-	-	-	-	29.8 Gb	34.2 Gb	13%
psn.ru	1	3	4	0	6%	11%	-	-	-	-	170.2 Gb	172.3 Gb	1%
pv.infn.it	1	3	0	0	960	0%	8K	3	6	0%	-	-	-
roma1.infn.it	2	8	52	48	100%	100%	261K	26	52	98%	1.5 Tb	2.8 Tb	47%
roma2.infn.it	1	4	8	20	100%	100%	67K	4	14	36%	1.1 Tb	1.1 Tb	3%
sara.nl	-	-	-	-	-	-	-	-	-	-	3 Tb	6.4 Tb	53%
saske.sk	1	3	0	0	0%	0%	-	-	-	-	582.6 Gb	1.2 Tb	53%
scai.fraunhofer.de	1	5	6	0	4%	13%	-	-	-	-	229.5 Gb	249.5 Gb	8%
scotgrid.ac.uk	1	6	0	0	-	-	-	-	-	-	-	-	-
shef.ac.uk	-	-	-	-	-	-	-	-	-	-	2.1 Tb	2.2 Tb	1%
sinp.msu.ru	1	6	1	0	0%	2%	-	-	-	-	1.8 Tb	2 Tb	9%
sns.it	1	4	0	0	0%	0%	11K	2	2	0%	31.3 Gb	34.3 Gb	9%
tier2.hep.man.ac.uk	2	6	3	1	1%	1%	-	-	-	-	62 Gb	90.6 Gb	32%
tifrgrid.res.in	1	3	2	0	3%	8%	-	-	-	-	30.6 Gb	34.3 Gb	11%
to.infn.it	1	5	55	30	92%	98%	285K	28	54	8%	28.7 Gb	1.9 Tb	99%
triumf.ca	2	7	174	202	95%	97%	-	-	-	-	548.7 Gb	1.1 Tb	53%
ts.infn.it	1	4	2	28	100%	100%	4K	1	2	100%	28 Gb	35.1 Gb	20%
uibk.ac.at	1	2	20	83	100%	100%	-	-	-	-	547.4 Gb	1.6 Tb	67%
ui.savba.sk	1	4	0	0	0%	0%	-	-	-	-	25.7 Gb	107 Gb	76%
usatlas.bnl.gov	1	5	0	0	-	-	-	-	-	-	4.8 Gb	8 Gb	- 0%
usc.cesga.es	1	3	1	0	1%	2%	10K	1	2	0%	52.3 Gb	90.6 Gb	2%
weizmann.ac.il	1	5	0	0	0%	0%	-	-	-	-	-	-	-
westgrid.ca	-	-	-	-	-	-	-	-	-	-	2.3 Tb	10.1 Tb	78%
zam.kfa-juelich.de	-	-	-	-	-	-	-	-	-	-	-	-	-
zib.de	-	-	-	-	-	-	-	-	-	-	43.1 Gb	45 Gb	4%

Italia:

~ 1500 CPU Online

A livello mondiale:

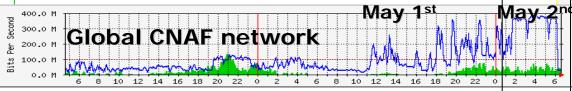
> 6000 CPU IN PRODUZIONE!

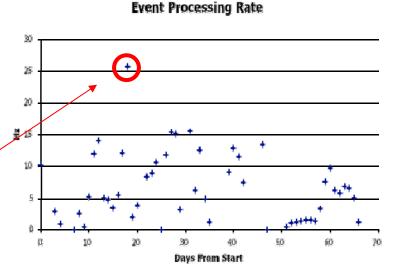
Ma ... funziona?

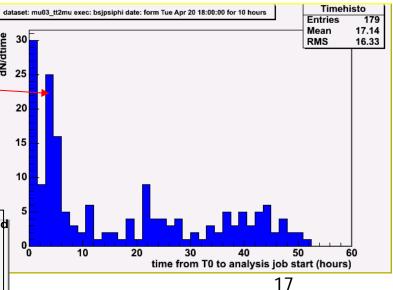
 Naturalmente nessuno vuole andare in presa dati nel 200x e poi accorgersi del tracollo

- Il 2004 e' stato per tutti gli esperimenti LHC anno di Data Challenge:
 - "simulazione delle operazioni giornaliere dopo il 2007, su scala ridotta"

DC nel 2004 - CMS

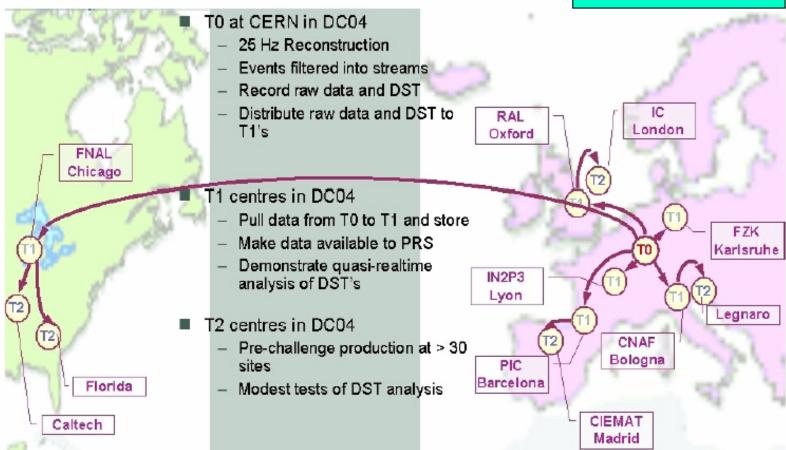



DC04 ha testato la ricostruzione al Tier 0 (produzione di dati ricostruiti) al 25% del rate 2007


- 25 Hz sostenuti per almeno 24 ore
- 80M eventi prodotti
- Spostamento dati T0→T1 via sistema proprietatio ma con autenticazione da GRID
- Analisi ai T2 in tempo reale!

~340 Mbps (>42 MB/s) sustained for ~5 hours(max was 383.8 Mbps)

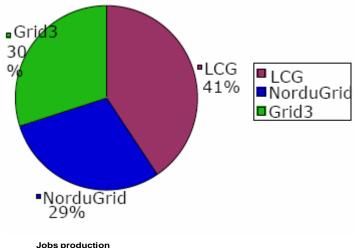
~4 TB/d

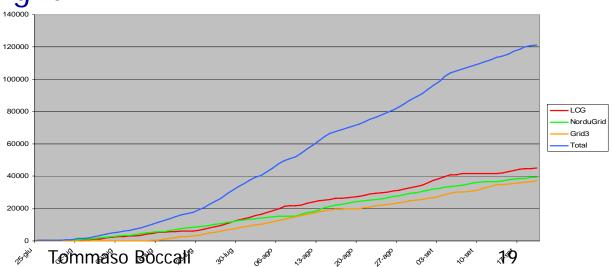


LHCC Review - 22 Nov. 2004

CMS: DC04 (2)

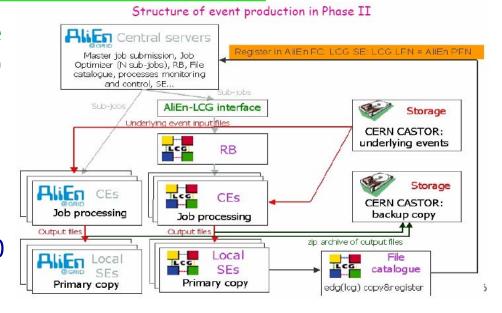
75 M Events 425 kSl2k-years 96 TB in POOL

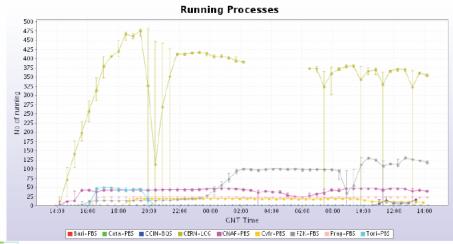



ATLAS

- Simulazione effettuata su 3 grid diverse
 - ok
 - 10M eventi + altri per calibrazioni
 - 35 TB
- test di operazioni T0 (ricostruzione dai raw) al 10% del rate
- analisi distribuita su grid
 - da ultimare

ALICE

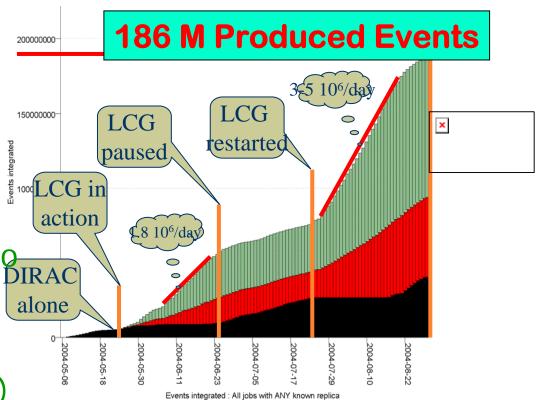

molto ambizioso: produrre e analizzare in modo realistico il 10% dei dati presi nel primo anno


Tre fasi:

- produzione distribuita delle collisioni Pb-Pb/p-p underlying ~ 20 M (ma complessi!) ~ 200 TB
- produzione dei segnali per di trigger
- analisi distribuita

Alien integrato con LCG

LCG viene visto come un unico sito da Alien



LHCb

- Goal di Fisica:
 - studi di Trigger di Alto Livello
 - studi di background
- Produzione su grid di
 - 30M eventi di segnale
 - 140M di eventi di fondo
- Anche qui tre fasi
 - simulazione (fatta)
 - ricostruzione (in corso)
 - analisi (da fare)

Commenti ...

- Il fatto che 4/4 DC su Grid alla fine abbiano funzionato (con se problemi medio/piccoli) e' un risultato straordinario visto che non era solamente un test
 - Prodotti ~ O(109) eventi
 - CPU in gioco ~ 10000
 - Generate simulazioni per O(500TB)
- Problemi?
 - Rete e CPU hanno funzionato bene, esiste qualche preoccupazione in piu' per quello che riguarda lo storage

Conclusioni

- Ci sono pochi dubbi che il modello MONARC integrato da (una o piu' delle)
 GRID sara' il modello di analisi all'inizio di LHC
- I Data Challenge effettuati fino a questo momento sembrano sostanzialmente validare le soluzioni scelte per rate fino ad un quarto di quello iniziale aspettato
 - il fattore quattro mancante dovrebbe farlo la tecnologia
- Se dal lato delle reti e della potenza di calcolo non sembrano esserci sostanziali problemi, forse qualcosa di piu' e di meglio si potrebbe farlo con lo storage.
- Domanda: deve davvero essere tutto cosi' complicato?
 - al momento questo e' lo stato dell'arte del calcolo distribuito; soluzioni piu' semplici sono comunque in vista/in fase di progetto

