

The Silicon Drift Detector of ALICE

- 1) Quick introduction of ALICE and its Internal Tracking System
- 2) Principle of a Silicon Drift Detector (SDD)
- 3) Main systematic effects
- 4) Spatial resolution

G. Batigne - IFAE, Catania, March 30th 2005

ALICE : Study of Quark Gluon Plasma

• Ultra-Relativistic Ion Collisions :

Study of nuclear matter at high energy density Study of the state equation of the nuclear matter Especially the Quark Gluon Plasma (QGP) Restauration of the chiral symmetry Deconfinement

• ALICE (A Large Ion Collider Experiment):

Collisions Pb-Pb à 5,5 TeV/A \rightarrow New range in energy High Multiplicity $(dN_{ch}/d\eta)_{max} \sim 8000$ particles (estimation with security factor) \Rightarrow Excellent Tracking system

• Tracking system :

Time Projection Chamber (TPC) Internal Tracking System (ITS): position of primary vertices (100 μ m) position of secondary vertices (hyperons, D, B) identification and tracking of low momentum particles ($p_T < 100 \text{ MeV/c}$)

Internal Tracking System (ITS)

SPD (Silicon Pixel Detector) : excellent granularity SDD (Silicon Drift Detector) : good granularity and measurement of dE/dx SSD (Silicon Strip Detector) : stereo-pairs of strips and measurement of dE/dx

Silicon Drift Detector : Principle

Cathods on both side of the wafer : Depletion of the Silicon HV decreases toward the anods → Drift field (Toboggan effect) Last cathods below anods : kick-up voltage

Position reconstruction : Centroid calculation Position X : anods Position Y : drift time (calibration of V_{drift}) dE/dx : Integral of the signal

Silicon Drift Detector of ALICE

Geometry :

7.5cm (anods) x 7.0cm (drift) x 300 μ m (thickness) Two active areas in order to limit the drift path 256 anods with a pitch of 294 μ m 292 cathods with a pitch of 120 μ m

Integrated voltage divider

Required Performances : Resolution in both direction ~ 35µm Two tracks resolution ~ 600µm

Drift Velocity Calibration

Mobility of electron : $\mu_e \sim 8 \ \mu m/ns$ But $V_{drift} = f(HV, T) \propto T^{-2.4}$ During the experiment, T must be stable within 0.1 K

⇒ Cooling system based on water flowing in tubes along the support Calibration by using electron injectors (MOS) located at precise locations

In SDD, there is 3 lines of 33 injectors

1 close to the anods 1 in the middle 1 at the far side

The drift time allows to deduce the velocity of electrons and therefore to make the conversion $T_{drift} \rightarrow Position$

Drift direction

22 anodes

Deviations in Position

Deviations :

 Pos_{meas} – $\text{Pos}_{\text{real}} \rightarrow \pm 500 \ \mu\text{m}$ (drift direction)

Systematic effect

Measured with a laser in order to « map » each detector

Defects in the doping induce Parasitic field (up to ~ 15%) \Rightarrow Error on the true position

SDD Position Resolution

Electron cloud has a 2D gaussian shape

Competition between two effects :

Position along anodes : centroid on 1-2 bins close to the anodes

Diffusion : the cloud is spreading in both directions with drift time \Rightarrow amplitude decreases so that ratio Signal/Noise increases

Resolution of about 35µm is achieved

Conclusion

Silicon Drift Detector :

- 🕑 Low noise
- Sensitivity to temperature variation (μ_e)
- 🙄 but under control : cooling and injectors
- \sim Parasitic field \rightarrow deviations in measured position
- \bigcirc Measurement of these deviations \rightarrow Correction
 - + Other effects (dark current, ...)

SDD in ALICE :

- Compromise between a good granularity (150×300 μ m²)
 - and energy loss measurement
- Chosen also because the surface is greater than Pixel detector and it costs less
- Meet the specifications : resolution of 35 μ m
 - two tracks separation : 600 μ m