

Searches for the SM and MSSM Higgs Bosons at CDF - II

Giorgio Cortiana, University of Padova and INFN *Representing the CDF Collaboration*

Contents:

- Run 2 at the Tevatron
- Higgs Sensitivity WG predictions
- SM Higgs searches
- MSSM and beyond searches
- Conclusions

Tevatron is performing well – delivered 800 pb⁻¹ so far. L_{start} above 10³² now common.

L has been following design curve! As L increases, CDF catching up by modifying trigger tables, improving DAO

Design curve means (8 fb⁻¹)by 2009!

FERMILAB'S ACCELERATOR CHAIN

Counting outwards from the beampipe central line, the detector is comprised of a silicon vertex detector (SVX II), a multiwire drift chamber (COT) for particle tracking, lead-scintillator electromagnetic calorimeters, iron-scintillator hadronic calorimeters and drift-tube chambers and scintillators for muon detection.

Production cross section > in the 1.0-0.2 pb range for $gg \rightarrow H$ > in the 0.5-0.03 pb range for VH \rightarrow H

Dominant Decays
> bb for M_H < 135 GeV
> WW* for M_H > 135 GeV

Search strategy:

 $M_H < 135 \text{ GeV}$ associated production and bb decay W(Z)H $\rightarrow I_V(II/v_V)$ bb Backgrounds: top, Wbb, Zbb...

 $M_H > 135 \text{ GeV gg} \rightarrow H$ production with decay to WW Backgrounds: electroweak WW...

But also:

M_H >135 GeV also WH→WWW(*) is Interesting! striking signature of missing Et plus three leptons, two of which may be of the same charge but different flavor

What we know about the SM Higgs

- LEP experiments have collected a wealth of information on the Higgs boson through comparisons of EW observables to EW theory + radiative corrections
- From theory we know its couplings, its decay modes, and how its mass impacts the W and top masses.
- If it exists, then we know its mass with about 60 GeV accuracy, and the direct search limit already cuts away a large part of the allowed mass region
- Latest LEP results: M_H=126⁺⁷³-48 GeV, M_H<280 GeV @ 95% CL (Winter '05).

Higgs Sensitivity WG Predictions

In 2003 the Tevatron chances for Higgs discovery were

re-evaluated

Idea: with available data and operating detectors, can better assess Tevatron reach Surprisingly, the new results meet or exceed 1998 Susy/Higgs WG ones.

Tagging b-jets

rapidity but is 45-50% for central b-jets from Higgs decay Mistag rates are kept typically at 4-5% Secondary Vertex tagging: tracks with significant IP are used in a iterative fit to identify the secondary vertex inside the jet

Final SM Higgs Results @ CDF- I

Search for WH in Run 2

WH \rightarrow Ivbb is a promising channel for CDF to isolate the H \rightarrow bb decay.

Initial data sample: inclusive lepton triggers, 162 pb⁻¹

Basic Selection: e/µ (20 GeV), missing E_T + 2 (15 GeV and $|\eta| <$ 2) jets (one b-tagged) i.e. W+2jets signature

Main background: QCD and W+jets production, top

Top veto: no extra jets with $E_T > 8$ GeV, veto on isolated 20 GeV track with opposite charge wrt the lepton

Non top bckg enter the signal sample when either a b-jet is tagged or light quark jet is mis-identified as heavy flavour jet by the tagging algorithm.

OW

W+bb/cc bkg is estimated via ALPGEN MC Non W bkg: i.e. events w/ mis-identified lepton

Search for WH in Run 2

 $WH \rightarrow WWW^*$ using High Pt Like-Sign Dilepton events WWW* gives one of the cleanest signature in hadron collisions Exploit the dominant Higgs decay mode for masses > 135 GeV But is still important for low masses to test Higgs couplings.

194 pb -1 of inclusive lepton data **Requirements:**

1 e/ μ (20 GeV) + ≥ 1 e/ μ (6 GeV), same charge Clean up cuts:

- Conversion removal for e.
- Cosmic-ray veto
- > M_u > 12 GeV and Z removal
- Same vertex requirement

WZ, ZZ, WW, tt, W+bb/cc **Fake lepton**

Residual photon conversion

. Х

COS(012)

....Search for WH in Run 2

High

Mass

WH →WWW* using High Pt Like-Sign Dilepton events

8 events are observed in 184 pb-1 of Run 2 data with the M_{\parallel} <80 GeV cut, with an expected background of 8.9±1.0.

A likelihood fit to the $\Delta \Phi_{II}$ distribution is performed to extract a limit on the H \rightarrow WW cross section *BR as a function of its mass. The result is σ H \rightarrow WW*B(WW \rightarrow IIvv)<5.6 pb for M_H=160 GeV.

Summary of SM searches

MSSM Higgs Bosons

The Minimal Supersymmetric extension of the SM predicts the existence of 3 neutral, 2 charged Higgs: h, H, A and H[±]. (h is SM-like Higgs boson) At tree-level all Higgs Sector parameters are determined by two quantities: $tan\beta = v_{\mu}/v_{d}$ (VEV ratio), and conventionally m_{A} .

Search for MSSM A→tau tau

The production x-sec of the CPodd A scale as $tan^2\beta$.

While in general $gg \rightarrow Abb$ (A $\rightarrow bb$) is promising, $gg \rightarrow A$ is difficult to study when A $\rightarrow bb$. The addition of the tau tau decay mode expand the CDF reach.

Signal and isolation cone are used to select good candidates. lepton+track triggered dataset 195 pb-1 Signal consists in a tau pair (had, tau $\rightarrow e/\mu$) Hadronic taus appears as narrow jets that are reconstructeded by using both tracking and calorimetric quantities.

Search for MSSM $A \rightarrow \tau \tau$

The τ candidates sample has significant contamination from quark and gluon jets.

Tau visible products and missing ${\rm E}_{\rm T}$ directions are used to separate signal from W+jets bkg

 $\label{eq:ztransform} \begin{array}{l} Z \to \tau\tau \text{ is the large source of background, can} \\ \text{only be distinguished by partial mass} \\ \text{distribution } m_{vis}(\text{lepton, tau, missing } E_{T}) \end{array}$

MSSM

Search for H++/H--

Summary and Outlook

The Higgs boson is being hunted at the CDF II experiment in most of the promising search channels.

No surprises with the analyzed 200 pb⁻¹ samples, but we have already three times more data on tape to look at!

By the end of 2009, the Tevatron might be able to see a M_H=115 GeV Higgs at 5σ, or exclude it all the way to 180 GeV.

...but that will require both cunning and the Tevatron delivering according to the design plan!

D0 Limits on signal production cross section & in the tan β vs. m_A plane:

Exclude significant portion of tan β down to 50, depending on m_A and MSSM scenario: (D0 Preliminary)

For $m_A = 120$ GeV: $\sigma < 31$ pb-1 @ 95%c.l., tan $\beta < 55$ @ 95%c.l. (Max Mixing)