

Higgs boson searches at LHC

Domenico Giordano INFN - Università di Bari

Incontri di Fisica delle Alte Energie Catania, 30/3 - 01/04/2005

<u>Physics goals:</u>

- SM Higgs boson discovery
- Supersimmetry discovery
- B-physics, Top quark physics, Standard physics (QCD, EW)
- Heavy Ion physics

PSB 1.4 GeV

PS 25 GeV 0.63 km

LINAC 50 MeV

LHC Physics

- Cross-sections of physics processes vary over many orders of magnitude
 - Inelastic $\sigma(pp) = 55$ mb;
 - heavy-flavor factory:
 - $\sigma(bb) = 500 \ \mu b; \ \sigma(tt) = 1 \ nb;$
 - vector-bosons factory;
 - $-\sigma(H) = O(10 \text{ pb}) (m_{H}=200 \text{ GeV})$
- Low cross sections for discovery physics (Higgs production)
 - \rightarrow Rejection power O(10¹³) (H-> $\gamma\gamma$ 120 GeV)
- Huge event rate
 - \rightarrow Highly Selective Trigger System
 - Extreme demands on detectors:
 - high granularity
 - high radiation environment
 - high data-taking rate

ATLAS & CMS

General pourpose detectors optimized for Higgs boson and New Physics search

- <u>Variety of signatures</u>
 - γ , e/ μ / τ , E_T^{miss}, b, t, jets
- Experimental requirements
 - Large acceptance in η coverage
 - Precise muon detection system (trigger & p_T meas. e.g. H \rightarrow ZZ \rightarrow 4 μ)
 - Very good em calorimetry (excellent e/ γ identif., good E resol. e.g. H $\rightarrow \gamma\gamma$)
 - Good hermetic jet and E_T^{miss} calorimetry (e.g. $H \rightarrow \tau \tau$)
 - Efficient tracking, vertex reconst. (good IP resol. e.g. $H \rightarrow bb$)

SM Higgs decays

Higgs couples to the heaviest 114.4 GeV/ c^2 $2M_{Z}$ (LEP2 limit) possible particles: Branching Ratio (Higgs) $H \rightarrow bb$ dominates ... w+wbb ... until WW, ZZ thresholds open 10^{-1} $\tau^+\tau^-$ ZZ $c\overline{c}$ Large QCD backgrounds: ft gg σ (H \rightarrow bb) \approx 20 pb; 10^{-2} σ (bb) $\approx 500 \ \mu b$ \Rightarrow no hope to trigger/extract 10 fully had. final states 400 500 50 100 300 200 1000 Higgs Mass (GeV) \Rightarrow look for final states with e(μ), γ Low mass region: $m_H < 2 m_Z$: $m_{\rm H} > 2 m_{\rm Z}$: $H \rightarrow ZZ \rightarrow 4I$ "golden channel" $H \rightarrow bb$: good BR, poor resolution \rightarrow ttH, WH $qqH \rightarrow ZZ \rightarrow II \nu \nu *$ $H \rightarrow \gamma \gamma$: small BR, but best resolution $qqH \rightarrow ZZ \rightarrow \parallel jj$ $qqH \rightarrow WW \rightarrow lvjj *$ $H \rightarrow \tau \tau$: via VBF * forward jet tagging $H \rightarrow ZZ^* \rightarrow 4I$ $H \rightarrow WW^* \rightarrow I_V I_V$ or $I_V jj$: via VBF

- Look for mass peak
 - achieve ${\approx}1\%$ resolution on m_{H}
 - severe requirements on ECAL:
 - acceptance, energy and angle resolution, γ /jet and γ/π^0 separation
 - motivation for LAr/PbWO₄ calorimeters
- Inclusive production mode $pp \to H \to \gamma \gamma X\,$:
 - $\sigma_{NLO}^*BR=$ 91.1 fb (m_H = 120 GeV)
- Large background (S/B \approx 1:20):
 - smooth continuum of $\gamma\gamma$ pairs
 - Dominant, irreducible
 - can be estimated from sidebands
 - γj and QCD jets with mis-identified $\gamma \prime s$

ATLAS study: S/ $\sqrt{B} \sim 6$ for 30 fb⁻¹, m_H = 120 GeV ⁰ $\frac{1}{100}$ 110 120

Low mass Higgs: $ttH \rightarrow ttbb$

- Complementary to $H \rightarrow \gamma \gamma$ for $m_H \leq 130 \text{ GeV}$
 - − σ_{10} (ttH)*BR(H→bb)= 1.09 0.32 pb
- Complex final state topology:
 - -1 high p_T isolated lepton (trigger) and E_T^{miss}
 - ≥ 6 jets out of which ≥ 4 b-tagged jets
- b-tagging and jet energy performance crucial !
- Backgrounds
 - ttbb, Ztt, tt+jets, W+jets
 - Systematic uncertainties: mainly from ttjj bkg Significant discrepancy between ATLAS and CMS σ_{10} sensitive to factoriz. scale, PDF and parton level cuts
- Likelihood based study
 - b-tagging of 4 jets, anti-b-tagging of 2 jets
 - mass reconstruction of W^{\pm} and 2 top quarks

ATLAS(CMS)	L=30 fb	⁻¹ , no K-fa	actors
m _h (GeV) =	120	130	140
S/√B	2.8(3.5)	1.9(2.8)	1.0
IEAE 2005 - D Gi	ordano		

g 5555555555 events / 10 GeV/c² 25 $L_{int} = 30 \text{ fb}^{-1}$ CMS k = 1.520 gen. m_{μ} : 115 GeV/c² const. : 13.63 ± 3.76 15 mean : 110.3 ± 4.14 sigma : 14.32 ± 3.70 10 5 00 50 100 150 200 250 300 $m_{inv}(j,j)$ [GeV/c²]

Higgs searches via VBF

φ

– Strong discovery potential for $m_H < 150 \text{ GeV}$

- Determine Higgs coupling to W/Z
- Useful for Invisible Higgs

Production

 σ = 4 pb @ 120 GeV = 20% of σ_{total}

Signature

– Two high \textbf{p}_{T} jets at large η and large $\Delta\eta$

Tag jets = highest p_T jet in each η -hemisphere

- Lack of colour exchange in initial state small jet activity in central region
 - → central jet veto (p_T>20 GeV LowLumi) (ATLAS Full simulation: fake jet rate <2%)</p>

Decays (all by ATLAS, red by CMS)

- H→WW→llvv and lvjj
- H→ττ→lvvlvv lvvj
- H → γγ

VBF: H→WW*

σ = 500 to 2000 fb for $M_{\rm H}$ = 120 to 190 GeV

Background

- tt, WWjj, W+4jets
- Selection
 - VBF cuts, m_{jj},
 - 2 isolated high p_T leptons,
 - m_T(IIv) (against DY)
 - τ–jet veto (against ττjj)
 - lepton angular correlation (against tt, WW)

(anti-correlation of W spins from H decay)

Bkg estimation

at level of 10% from data + MC shape relaxing lepton cuts

Significance

 $- >5 @ 10 \text{ fb}^{-1} (m_{H} = 140 \div 190 \text{ GeV})$

(combined WW \rightarrow II vv and Ivjj, Δ BG = 10%)

IFAE 2005 – D. Giordano

The "golden channel": $H \rightarrow ZZ^{(*)} \rightarrow 4I$

(fb⁻¹)

ۍ ۳

Luminosity for Significance

Very clean signature $H \rightarrow ZZ^{(*)} \rightarrow I^+I^-I'^+I'^-$ (I=e,µ) Four isolated high p_T leptons

Three topologies 4µ, 2e2µ, 4e

Valid for the mass range 120 $< m_{\rm H} < 600~{\rm GeV}$

Background

- Irreducible: ZZ Reducible: Zbb, tt

Selection

- Cut on p_T of four leptons
- Isolation of four leptons (Zbb, tt)
- Impact parameter, vertex (Zbb, tt)
- Mass of two lepton pairs and 4 lepton state

Significance > 5

- With <30 fb⁻¹: $m_H \in [120; 600]$ GeV
- Already at 5 fb⁻¹: $m_H \in [190; 450]$ GeV

Higgs properties

Mass, spin CP quantum numbers

📃 Z/y

This channel can contribute in the mass region $160 \div 180$ GeV where the BR (H \rightarrow ZZ (*)) is smallest due to opening WW channel

Backgrounds:

WW, WZ, tt, Wt

Signature:

- 2 isolated high p_T leptons, and 2 neutrinos
- M_T(II) (No narrow mass peak)
- central jet veto, b-jet veto
- strong lepton angular correlations

Very High Mass Higgs

- Cross-section O(pb) for m_H>600 GeV
- Higgs width increases dramatically with $M_H (\Gamma_H \propto M_H^3)$
- Need more abundant channels final states: llvv, lljj,lvjj
- VBF distinctive signature of two very forward jets:

 - $\mathbf{ \diamond qqH} \rightarrow qqWW \rightarrow qqlvjj$
 - $\clubsuit qqH \rightarrow qqZZ \rightarrow qqIIjj$

NFN

istituto Nazional di Fisica Nuclear

10²

m_H (GeV)

m_H(GeV/c²)

SM Higgs discovery potential

Higgs Mass & Width Measurements

> Direct where Higgs mass can be reconstructed: $H \rightarrow \gamma \gamma$, $H \rightarrow bb$, $H \rightarrow ZZ \rightarrow 4I$

"Indirect" from Likelihood fit to transverse mass spectrum:

 $\mathsf{H} {\rightarrow} \mathsf{W} \mathsf{W} {\rightarrow} \mathsf{I}_{\mathsf{V}} \mathsf{V} \mathsf{I}_{\mathsf{V}} \mathsf{I}_{\mathsf{V}} \mathsf{I}_{\mathsf{V}}$

Uncertainties

statistical

> absolute energy scale (0.1% for I/γ , 1% for jets)

> 5% on BG and signal rates for H \rightarrow WW channels **Resolution:**

- For $\gamma\gamma$ & 4I \approx 1.5 GeV/c²
- For bb \approx 15 GeV/c²
- At large masses decreasing precision due to large $\Gamma_{\rm H}$

Direct width measurement:

Mass peak width of $H \rightarrow ZZ \rightarrow 4I$ channel for $M_{H} > 200 \text{ GeV}$

 $(\Gamma_{\rm H} > \Gamma_{\rm exp})$

Minimal Higgs sector structure:

2 Higgs doublets

anomaly-free theory

\$ generate mass for "up" and "down" type
 quarks (and charged leptons)

- ➤ 5 Higgs bosons: h, H, A, H[±];
- > 2 free parameters defining Higgs sector (tree-level): $m_{A,} \tan \beta = v_u/v_d$ Mass limits: $m_h < m_z \cos\beta$, $m_A < m_H$, $m_W < m_H^+$
- Large radiative corrections to masses & couplings:
 - depends on SUSY parameters
 - ➢ top mass, stop mixing
 - \succ m_h < 135 GeV

- i. SUSY particles are heavy: no contribution to Higgs production/decay
- ii. SUSY particles contribute in production/decays
 - $H/A \rightarrow \chi^2_0 \chi^2_0 \rightarrow 4I + E^{miss}$; h prod. in cascade decays ($\chi^2_0 \rightarrow h \chi^1_0$)
 - Impact on Higgs decay to SM particles generally small

 $h \to \gamma\gamma$ 10% smaller, A/H \to SM at most 40% smaller

Other branches

- stop mixing: Maximal No mixing
- $\tan \beta$ value: low high

MSSM Higgses

Couplings MSSM/SM

	+	b/τ	W/Z
h	cosα/sinβ	-sinα/cosβ	sin(α - β)
Н	sinα/sinβ	cosa/cosβ	cos(α–β)
Α	cotβ	tanβ	

 α = mixing bw h/H

h/H and A

Production:

- direct gg->h/H/A and ass. prod. gg \rightarrow bb h/H/A M_A>300 GeV, tan β >10: >90% from ass. prod

h is SM-like for $m_A > m_h^{max}$

≻ H+-

Production:

- $M_{H^{+-}} < M_t$: tt events with decay t \rightarrow b H⁺⁻
- gb→t H⁺⁻; gg(qq)→tb H⁺⁻; qq→H⁺⁻

•High
$$\tan\beta \rightarrow \text{Large BR}(h,A,H \rightarrow bb,\tau\tau)$$

- •Small $\alpha \rightarrow$ small BR(h \rightarrow bb, $\tau\tau$)
- •A does not couple to $W/Z \rightarrow No VBF prod.$
- •HVV suppressed for large $tan\beta$

Decay modes:

- h →bb (90%) →ττ (8%)
- H/A \rightarrow µµ and H/A \rightarrow ττ enhanced with tan β

Decay modes:

- H+-→τν
- H+-→tb (M_H+->M_t)

Light Higgs boson h

Search for SM-like channels

VBF channels very useful: "cover large part of MSSM plane"

 $pp \rightarrow bbH/A$

> H/A → μμ

Clean signature and good mass resolution (1-2%) BR(H/A \rightarrow 2µ) 4x10⁻³ but x-sec enhanced by tan β Background

- $Z/\gamma^* \rightarrow 2\mu$ (dominant) rejected using b-tagging (vertex + i.p. $\varepsilon \sim 40\%$)
- in this param space is superposition of H and A ($\Delta m \sim 2 \text{GeV}$)
- Two-muon mass resol. not enough to resolve 2 GeV

> H/A $\rightarrow \tau\tau$

- Channels: II, I+jet, jet+jet
- Measure tanβ from event rate with uncertainty from 17.2% (jet+jet) to 10.8% (l+jet)

Background

- Z/γ^* , QCD rejected using b-tagging
- tt rejected using central jet veto
- W+jet, QCD rejected using τ -tagging

Overall discovery potential

≻Plane fully **covered** with 30 fb⁻¹

≻2 or more Higgses observable in large fraction of plane

 \Rightarrow disentangle SM / MSSM

But...

≻significant area where only lightest Higgs boson h is observable

➤ can SM be discriminated from extended Higgs sector by parameter determination?

Conclusions

- > SM Higgs boson can be discovered (5σ) at LHC over the **full mass range** with <30 fb⁻¹
 - Vector Boson Fusion significantly enhances sensitivity for low and medium M_H
 - Forward jet tagging crucial
- > MSSM M_A-tan β space will be almost completely accessible with **30 fb**⁻¹
 - for $M_A < 500$ GeV, several Higgs bosons observable
 - "weak region" for $M_A > 500$ GeV:

 \sim only h observable unless A/H/H ${}^{\!\pm}\!\!\rightarrow$ SUSY particles

BUT...

> The discovery is only the first step:

need to determine Higgs properties in order to distinguish bw different models (and make sure that it is really a Higgs boson)

- mass, spin, CP properties, couplings to different particles,
- Still a lot of work to be done
 - Detector understanding (calibration, alignment, ...)
 - Improvement, validation and tuning of MC tools (use of Tevatron data)
 - Full simulation analyses (CMS P-TDR, end 2005)

Backup slides

Trigger requirements

- Cover all SM topologies and those expected from new physics
- Inclusive selection (to discover unexpected new physics)
- ✤ Keep safety margin against uncertainties
 - Knowledge of (background) cross-sections
 - Real detector behavior, beam-related (and other) backgrounds
 - Performance of the selection software (Efficiency must be measurable from data)

ATLAS	F	ILT @ 2	2x10 ³³ cm ⁻² s ⁻¹		CMS
Object		Rates (Hz)	Trigger	Threshold (ε=90-95%) (GeV)	Indiv. Rate (Hz)
Electrons	e25i, 2e15i	~40	1e, 2e	29, 17	34
Photons	γ60, 2γ20i	~40	1γ, 2γ	80, (40*25)	9
Muons	μ20i, 2μ10	~40	1μ, 2μ	19, 7	29
Rare b-decays		25	1τ, 2τ	86, 59	4
$(B \rightarrow J\Psi(\Psi')X)$	$2\mu 6 + \mu^+ \mu^- + mass cut$	~25	Jet * Miss- E_{T}	180 * 123	5
Jets	j400, 3j165, 4j110	~20	1-jet, 3-jet, 4-jet	657, 247, 113	9
Jet+missing E_{T}	j70 + xE70	~5	e * jet	19 * 52	1
Tau+missing E_{T}	τ35i + xE45	~10	Inclusive b-jets	237	5
Calibration/Others		~20	Calibration/other		10
Total HLT Output Rate		~200	Total HLT Output Rate		105

IFAE 2005 – D. Giordano

$H \rightarrow \gamma \gamma$: Vtx reco

The vertex of the Higgs boson can be found with the help of additional tracks in the same event:

- Higgs boson p_T is balanced by the rest of the particles in the event
- Vertex can be identified by the hardest tracks of the bunch crossing.

Vertex correction significantly improves the m_H resolution:

- > $\sigma_{\rm H}/m_{\rm H} 0.7\%$ (m_H = 110-150 GeV)
- ➢ efficiency in 2.5 GeV mass window is improved by 31%.

Higgs partial widths and coupling ratios

With 30 fb⁻¹ of data

- Accuracy of relative branching ratios and relative couplings vary from 20% to 60% depending on coupling and mass
- > Worst channel: H → bb

Invisible Higgs

$h \to \text{LSP}$

VBF most promising channel

- Trigger on forward jets + E_T^{miss}
- Backgrounds:
 - Events that originate E_T^{miss}:
 Wjj, Zjj, QCD multi-jets
 - Bkg estimate from data
 (Z→II, W →Iv) to level of 3%
- Selection
 - VBF cuts (forward jets, central jet veto)
 - Lepton veto
 - $\Delta \phi_{jj}$

No sensitivity is expected for heavy scalar H due to suppression of the VBF x-sec

IFAE 2005 – D. Giordano

IFAE 2005 – D. Giordano