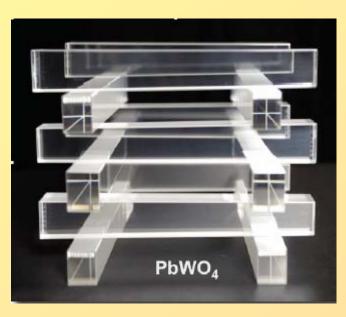
Il Calorimetro Elettromagnetico di CMS

Riccardo Paramatti

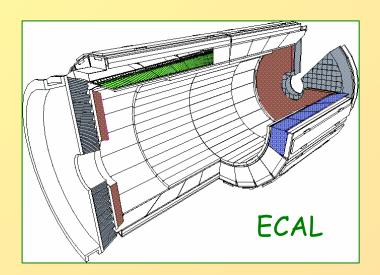

CERN & INFN - Roma1 IFAE 2005 Catania 31/03/2005

Outline

- Caratteristiche del calorimetro
- Stato della costruzione
- Precalibrazione del calorimetro
- Strategie di calibrazione in situ
- Ricostruzione degli elettroni

<u>Partecipazione INFN (Roma, Milano e Torino)</u>: costruzione e test moduli del calorimetro, produzione e test schede elettronica, sistema di raffreddamento, sistema High Voltage per APD, struttura meccanica, ECAL database, precalibrazione, analisi e simulazione Test Beam, produzione Montecarlo, calibrazione in situ, analisi canali SM Higgs e BSM.

Catania - 31/03/2005



ECAL Introduction

- Lead Tungstate Crystals PbWO₄
- Solenoidal Magnetic Field: 4 Tesla •

Parameter	Barrel	Endcap
η coverage	η < 1.48	1.48 < [η] < 3.0
Granularity (Δη×Δφ)	0.0175×0.0175	varies in η
Crystal Dims. (cm ³)	2.18×2.18×23	2.85×2.85×22
Depth in X ₀	25.8	24.7 (+3X ₀)
No. of crystals	61,200	14,950
Crystal Volume (m ³)	8.14	3.04
Photodetector	APDs	VPTs
Modularity	36 supermodules	4 Dees

Crystal Producers: Bogoroditsk (Russia), Shanghai Institute of Ceramics (Cina) **Construction Regional** Centers: CERN (lab 27) and INFN/ENEA - Rome 3

Catania - 31/03/2005

Riccardo Paramatti

INFN

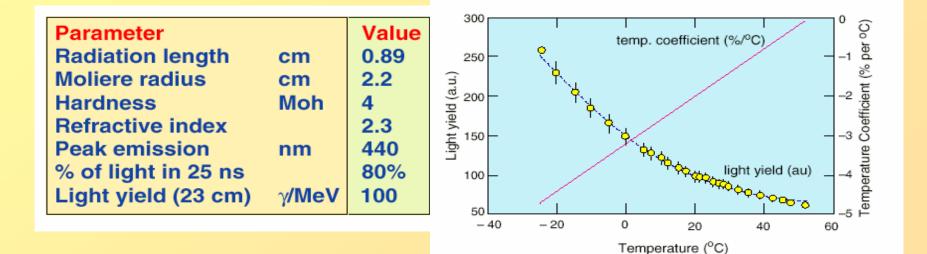
Crystal choice

	Nal(TI)	BaF2	CsI(TI)	Csl	CeF3	BGO	PWO	
ρ	3.67	4.88	4.53	4.53	6.16	7.13	8.26	g/cm³
XO	2.59	2.05	1.85	1.85	1.68	1.12	0.89	cm
RM	4.5	3.4	3.8	3.8	2.6	2.4	2.2	cm
τ	250	0.8/620	1000	20	30	300	15	ns
λρ	410	220/310	565	310	310/340	480	420	nm
n (λp)	1.85	1.56	1.80	1.80	1.68	2.15	2.29	
LY	100%	15%	85%	7%	5%	10%	0.2%	%Nal

Typical light yield of NaI \sim 40000 γ/MeV

Catania - 31/03/2005

Characteristics

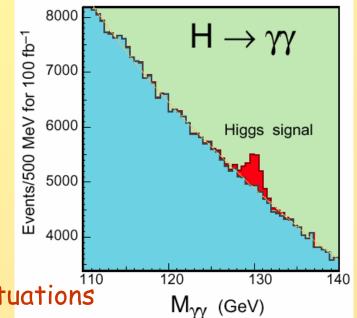


- Fast scintillation
- Small X₀ and R_m
- Radiation hardness
- Relatively easy to grow

$\overline{\times}$

- Low Light Yield
- High index of refraction
- Strong LY dependance on T

Catania - 31/03/2005



The discovery potential of an intermediate mass Higgs boson via the two photon decay channel is strongly dependent on the energy resolution.

$$\frac{\sigma}{E} = \frac{a}{\sqrt{E}} \oplus b \oplus \frac{c}{E}$$



- a: stochastic term from Poisson-like fluctuations
 - sampling contribution (natural advantage of homogenous calorimeters)
- b: constant term
 - dangerous limitation to high energy resolution
 - important contribution from intercalibration constants
- C: noise term from electronic and pile-up
 - relevant at low energy

Energy Resolution (2)

Stochastic Term

- photostatistics contibution:
 - light yield
 - geometrical efficiency of the photodetector
 - photocatode quantum efficiency
- electron current multiplication in APDs
- lateral containment of the shower

Constant Term contributions:

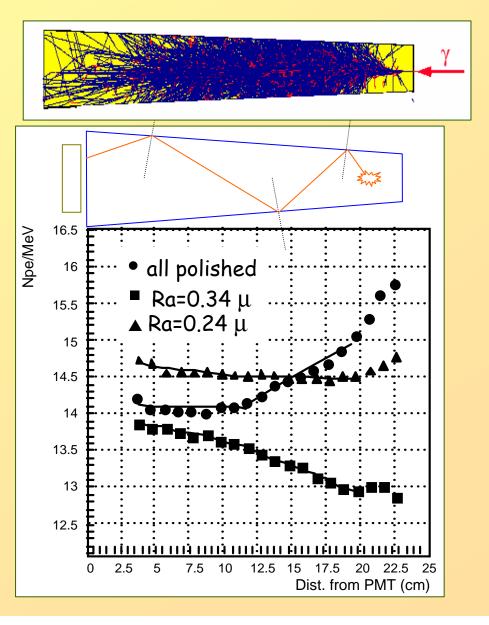
- leakage (front, rear, dead material)
 CMS full shower simulation < 0.2 %
- temperature stabilization < 0.1 °C (dLY/dT = -2.0%/°C @ 18°C; dM/dT ~ -2.3 %/°C)
- APD bias stabilization (±20 mV / 400 V) (dM/dV = 3%/V)
- light collection uniformity (next slide)

 intercalibration by light injection monitor and physics signals

Total constant term

 $C \approx 0.5 \%$

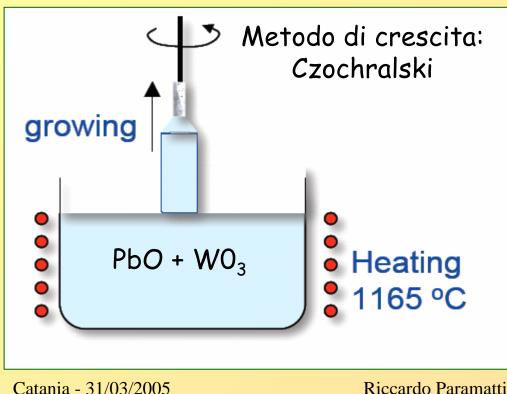

Light Collection Uniformity



• A non uniformity of the light collection in the shower max region may significantly contribute to the constant term in the energy resolution.

• Uniformity can be controlled by depolishing one lateral face with a given roughness

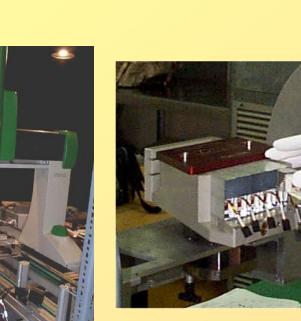
Uniformity treatment



Construction (1)

- Crystal R&D phase (1995-1998)
- 6000 crystal preproduction (1998-2000)
- Crystal production: 2001-2006 Barrel 2006-2007 Endcap

Construction (2)



CERN (lab 27) and INFN/ENEA (Casaccia) Regional Centers:

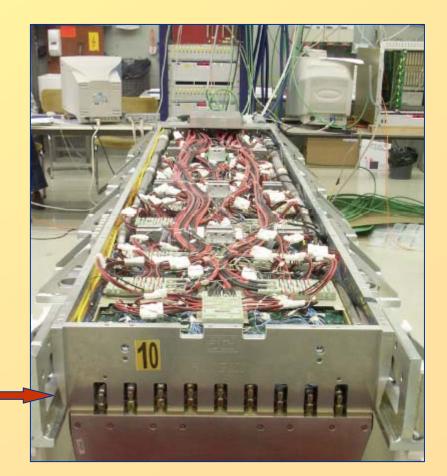
• Automatic measurements of:

crystal dimensions, trasmission, light yield and uniformity

- Submodule assembly (10 crystals)
- Module assembly (40-50 submodules)

Catania - 31/03/2005

Construction (3)

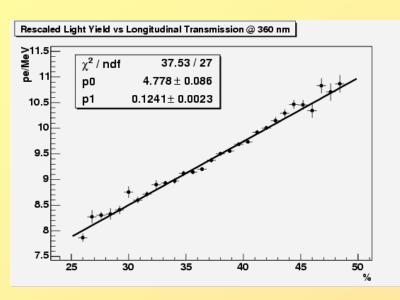


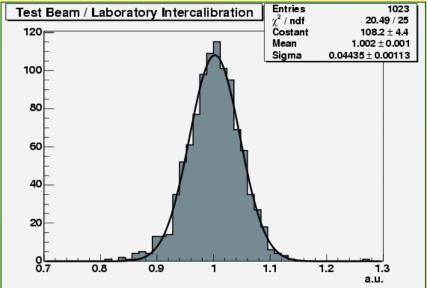
• Up to now, more than half of the barrel modules have been assembled.

Foreseen rate: one SuperModule
 per month (= real rate)

• The electronic chain is assembled and tested at Cern (Prevessin)

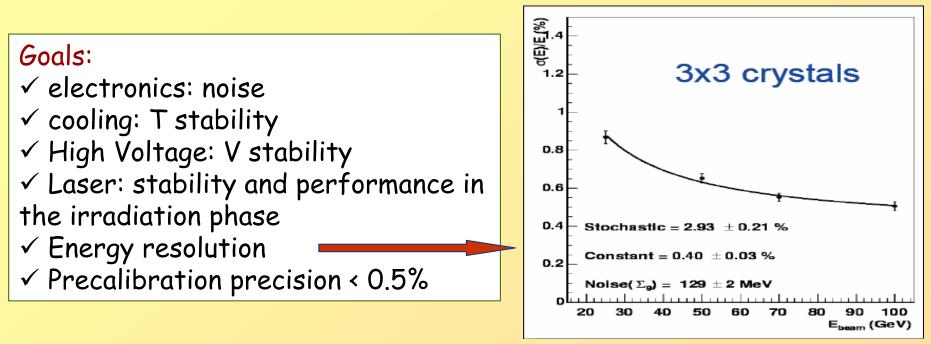
1 SuperModule = 4 Modules = 1700 xtals + 3400 APDs + 68 TriggerTowers + 34 HV channels + ...


Catania - 31/03/2005



Precalibration (1)

- Crystal measurements performed in the Regional Centers allow to precalibrate the electromagnetic calorimeter to a precision level of about 4%.
- A useful correlation between Light Yield and Longitudinal Transmission has been observed. It helps to improve the precalibration at the startup.

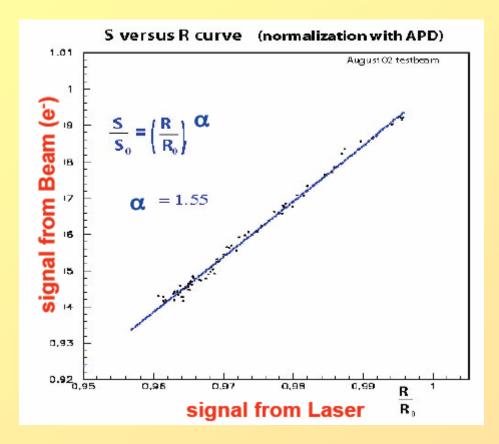

Catania - 31/03/2005

Calibration with Cern-SPS electron beams in the last three years

 Few other SuperModules could be probably tested and calibrated in the 2006 test beam @ Cern.

• This year a cosmic run will start. The aim is to reach a precalibration level of 3% with a rate of two SuperModules per month.

Catania - 31/03/2005



Laser Monitoring

Electromagnetic radiation produces a damage:

- crystal trasparency is reduced
- scintillation mechanism is not affected

The relation between XL response to electrons (S/S_0) and response to laser (R/R_0) varies in the same way during recovery and irradiation phases.

Insitu Calibration (1)

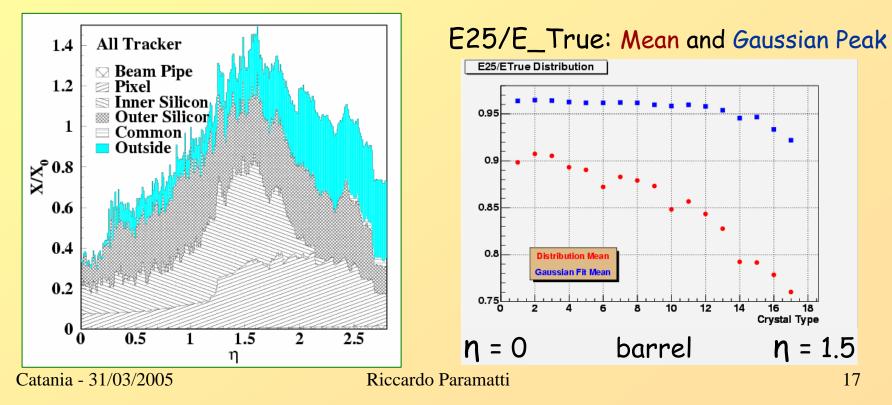
<u>In-situ calibration with physics events</u>: this is the main tool to reduce the constant term to the design goal of 0.5%.

- At the beginning of detector operation -> fast intercalibration method based on the ϕ symmetry in minimum bias events.
- Energetic electrons from $Z \rightarrow e^+e^-$ decay -> intercalibration of different regions and absolute energy scale setting.
- Once the Tracker fully functional -> intercalibration of individual crystals with E/p measurement ($W \rightarrow ev$ events).

TRACKER MATERIAL:

the amount of material (~ $1 X_0$) between interaction point and ECAL is the main difficulty in performing calibration.

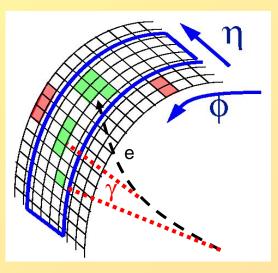
Catania - 31/03/2005



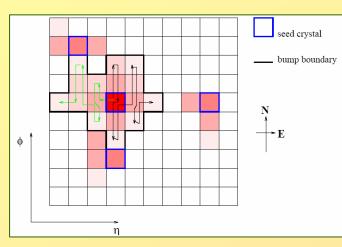
Tracker Material

- Complex tracking system + frames + cooling + cables and services
- Around one radiation lenght between the interaction point and the electromagnetic calorimeter !

• Bremsstrahlung and photon conversion (big non-gaussian tails in physical distributions)

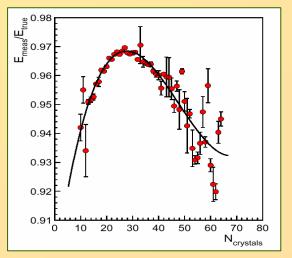


Electron Reconstruction



The electron cluster is spread by Bremsstrahlung (mainly in ϕ)

- Too little recostructed cluster: not full containment of brem. photons
- Too big recostructed cluster: noise, pile-up

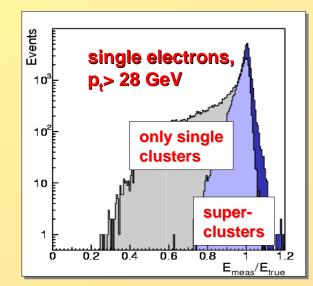


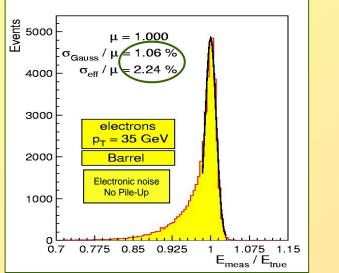
SuperCluster = clustering with dynamic algos.

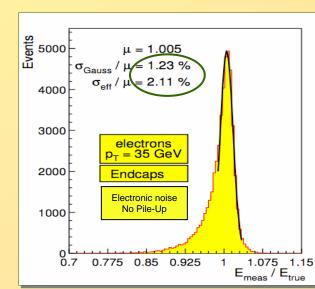
more brem./conversions = bigger SC dimension

SC Energy and Position are used in High Level Trigger

Catania - 31/03/2005


(CERN)

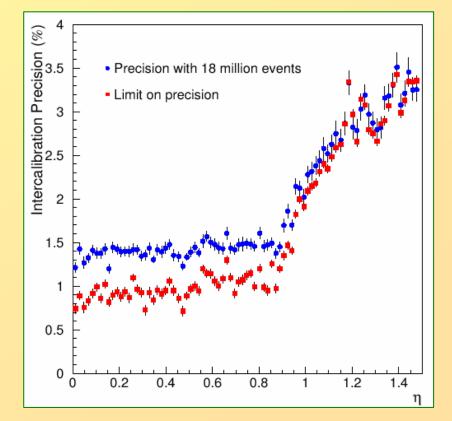

Electron Reconstruction (2)



This dynamic algorithm reduces non gaussian tails more than a fixed dimension algorithm (e.g. nxn crystals cluster). SuperCluster is optimized for HLT threshold energies. Considering low energy electron (≈ 10 GeV),

tracker momentum helps to improve energy measurements. Work in progress.

To be compared with intrinsic calorimeter resolution < 0.9%



\$ symmetry

Assumption: the total transverse energy deposited from a large number of events should be the same for all crystals at fixed η

Aim: reduce the number of intercalibration constants at the startup: from 61200 (crystals) to 170 (rings) in the barrel.

Studies with fully simulated Montecarlo give a precision of 1.3% -3.5%, in case of limited knowledge of ϕ inhomogeneity.

Catania - 31/03/2005

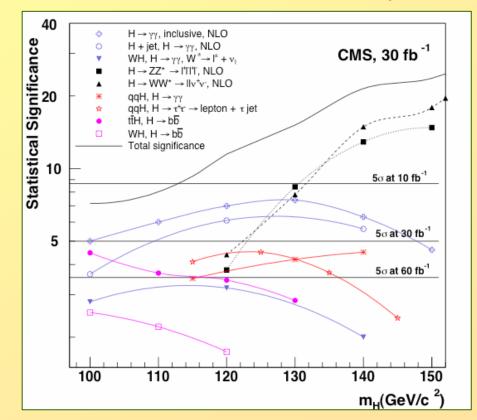
$Z \rightarrow e^+ e^-$

- The rings can rapidly be intercalibrated using $Z \rightarrow e^+e^-$ without tracker momentum measurements, using reconstruction of the invariant mass
- A large fraction of events allows to intercalibrate the endcaps with respect to the barrel
- The $Z \rightarrow e^+e^-$ rate is ~ 1 Hz (almost flat in η)

 $W \rightarrow e v$

- The electron shower involves many crystals -> algorithm to unscramble individually the calibration constants.
- The W \rightarrow ev rate is ~ 10 Hz.
- In a couple of months at $2*10^{33}$ cm⁻² s⁻¹, exploiting the full tracker information will allow to reach 0.5% resolution.

New calibration studies on low energy photons $(\pi \rightarrow \gamma \gamma \text{ and } \eta \rightarrow \gamma \gamma)$. Mainly during the startup phase.

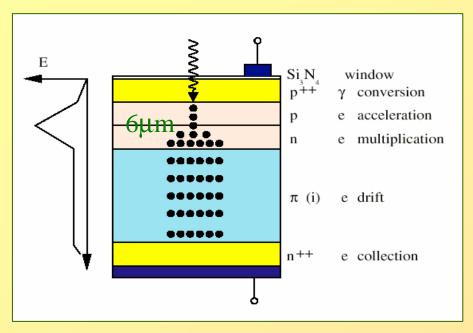

Catania - 31/03/2005

Conclusioni

Stiamo lavorando per...

Catania - 31/03/2005

Backup slides

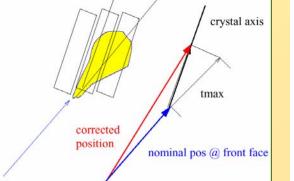

Catania - 31/03/2005

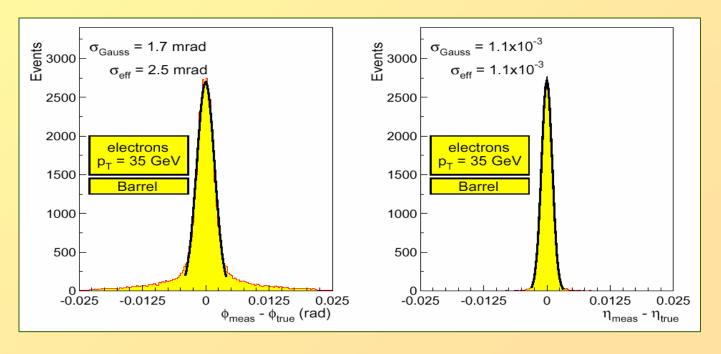
Avalanche Photo Diodes

Due to low light yield, need photodetector with intrinsic gain. Radiation hard and insensitive to magnetic field (4T)

- Internal gain: M=50 @ HV ≈ 380 V
- Good match to PWO scintillation spectrum (Q.E. ≈ 75% @ 430 nm)
- Strong sensitivity of gain to Voltage and Temperature variations: good stability needed

High Level Trigger


		2x10 ³³ cm ⁻² s ⁻¹	10 ³⁴ cm ⁻² s ⁻¹			
	Signal	Background	Total	Signal	Background	Total
Single electron	<i>W</i> →ev: 10Hz	π^{\pm/π^0} overlap: 5Hz π^0 conversions: 10Hz $b/c \rightarrow e$: 8Hz	33Hz	<i>W</i> → <i>e</i> v: 35Hz	π^{\pm}/π^0 overlap: 15Hz π^0 conversions: 19Hz $b/c \rightarrow e$: 6Hz	75Hz
Double electron	<i>Z→ee</i> : 1Hz	~0	1Hz	<i>Z→ee</i> : 4Hz	~0	4Hz
Single photon	2Hz	2Hz	4Hz	4Hz	3Hz	7Hz
Double photon	~0	5Hz	5Hz	~0	8Hz	8Hz
TOTAL:			43Hz			94Hz


Angular Resolution

- Energy-weighted mean position of crystals in the cluster with 2 corrections:
 - Longitudinal center of gravity of the shower because the crystals do not exactly point to the nominal interaction vertex.

- Weighted mean using the logarithm in the cluster (not in the SuperCluster !)

