RD50

Sviluppo di rivelatori a semiconduttore resistenti alla radiazione

Anna Macchiolo

Università degli Studi di Firenze e INFN Firenze

in rappresentanza della Collaborazione RD50 (http://rd50.web.cern.ch/rd50/)

- Motivazione
- La collaborazione RD50
- Materiali resistenti alla radiazione: silicio Fz, Cz, MCz, Epi
- Dispositivi innovativi: rivelatori sottili, n-in-p, 3D
- Sommario

IFAE Incontri di Fisica delle Alte energie - Catania 2005

Da LHC a Super –LHC (I)

•Potenziale di scoperta: nel 2012 (dopo 2 anni al picco di luminosità di LHC) il tempo di dimezzamento degli errori statistici sale a circa 8 anni

•Danno da radiazione: dopo 8-10 anni di presa dati i tracciatori degli esperimenti di LHC inizieranno ad avere prestazioni molto ridotte.

	LHC	SLHC	
Energia del fascio	7 Tev	12.5 TeV	
Rate di collisioni	40 MHz	40 (80?) MHz	
Luminosità istantanea	10 ³⁴ cm ⁻² ×s ⁻¹	10 ³⁵ cm ⁻² ×s ⁻¹	
Luminosità integrata	500 fb ⁻¹ (dopo 10 anni)	2500 fb ⁻¹ (dopo 5 anni)	

A.Macchiolo INFN Firenze

Da LHC a Super –LHC (II)

Distanze rac del tracker 'attua	liali le' di CMS		Fluenze previste a S-LHC
Pixel:	4 cm	=>	1.6×10 ¹⁶ cm ⁻²
	11 cm	=>	2.3×10 ¹⁵ cm ⁻²
Microstrip:	22 cm	=>	8×10 ¹⁴ cm ⁻²
	115 cm	=>	1×10 ¹⁴ cm ⁻²

Le tecnologie attuali (pixel n-on-n) lavorano solo fino a fluenze di circa 10¹⁵ cm⁻²

Il volume del tracker può essere diviso in tre regioni			
R> 60 cm	miglioramento della tecnologia dei rivelatori a micro-strip		
20 < R < 60 cm	miglioramento della tecnologia dei rivelatori a pixel (il rate più alto richiede un aumento di granularità rispetto a LHC)		
R< 20 cm	richiesta attività di R&D sui materiali e la struttura dei sensori		

RD50 – Strategia scientifica

RD50: Esperimento approvato dal Cern nel 2002 - 271 membri da 52 istituti

Obiettivo: sviluppo di rivelatori a semiconduttore resistenti alle radiazioni fino a fluenze di 10¹⁶ cm⁻²

• Ingegnerizzazione dei materiali

• Caratterizzazione microscopica dei materiali, corrispondenza con il comportamento macroscopico

• Ingegnerizzazione dei difetti nel silicio (Fz, DOFz, Cz, MCz)

• Nuovi materiali (GaN, SiC)

•Ingegnerizzazione dei dispositivi

• Miglioramento delle strutture planari attuali (rivelatori 3D, rivelatori sottili, semi 3-D, rivelatori stripixel)

• Test di sistemi di rivelatori di tipo LHC ma prodotti con substrati radiation-hard

• Variazione delle condizioni operative

Tipi di silicio investigati da RD50

Materiali	Simbolo	ρ Ω cm	[O _i] cm ⁻³
Fz standard di tipo n e p	FZ	$1 - 7 10^3$	< 5 10 ¹⁶
Fz di tipo n e p ossigenato per diffusione	DOFZ	$1 - 7 10^3$	~ 1 - 2 10 ¹⁷
Czochralski n type	CZ	$1.2 \ 10^3$	~ 8-9 10 ¹⁷
Czochralski magnetico, tipo n e p	MCZ	1.2 10 ³	~ 5 -9 10 ¹⁷
Silicio epitassiale su substrato CZ	EPI	50-100	substrato 10 ¹⁸

Si Czochralski

• Cresciuto in un crogiuolo di quarzo (SiO_2) che favorisce una alta contaminazione di ossigeno $(10^{17} - 10^{18} \text{ cm}^{-3})$

• Recentemente si è reso disponibile materiale Cz di alta resistività (> 1 K Ω cm) che permette l'uso in fisica delle alte energie.

• Costo minore rispetto a FZ perchè è un materiale standard nell'industria IC

RD50 Effetto dell'ossigeno: il punto di vista microscopico

- 1. Un'alta concentrazione di ossigeno favorisce la formazione del complesso **VO**
 - 1. VO è neutro a temperatura ambiente
 - 2. La formazione di VO è competitiva con il processo VO+V=V₂O oppure con la formazione di V₂ (accettori profondi) \Rightarrow minore carica negativa
- 2. Alta [O] favorisce la formazione di donori termici durante l'irraggiamento
 1. 1+O₂=IO₂ precursore dei donori termici ⇒ carica positiva
 - I: livello di accettore profondo a E_C- 0.54eV
 - sviluppo proporzionale $\propto \text{dose}^2$
 - è responsabile di circa l'85 % della variazione di Neff
 - **b**uon candidato per il difetto V_2O

Difetto Γ: livello di accettore E_v+0.68eV
responsabile di circa il 10% della variazione di Neff

IFAE 30 Marzo – 1 Aprile 2005

(I. Pintilie et al., NIM A 514 (2003) 18)

RD50

Standard FZ, DOFZ, Cz and MCz Silicon

Irraggiamento con protoni da 24 GeV/c

•Silicio standard Fz

- inversione del substrato da tipo n a tipo p a fluenze di $\sim 2 \times 10^{13} \text{ p/cm}^2$
- forte aumento di Neff ad alte fluenze

• Fz ossigenato (DOFZ)

- inversione di tipo del substrato a fluenze ~2×10¹³ p/cm²
- ridotto aumento di Neff ad alte fluenze

• Silicio di tipo Cz e MCz

- non si verifica nessuna inversione
- del substrato su tutto il range di
- fluenze fino a 10^{15} p/cm^2 (confermato con misure di TCT per Cz)
- •la generazione di donori compensa quella di accettori nel range di alte fluenze

• Comportamento comune a tutti i materiali

- La corrente di leakage aumenta con la stessa costante di proporzionalità per tutti i materiali in funzione della fluenze
- stesso aumento di trappole (~ 20%) per i portatori di carica

Rivelatori sottili

- Perchè scegliere rivelatori sottili?
 - Corrente di leakage ridotta $I_{leak} \propto W$
 - Tensione di svuotamento minore $V_{dep}=qW^2N_{eff}/2\epsilon$ \propto W^2
 - Alle fluenze di SLHC la raccolta di carica per rivelatori planari è limitata dal cammino libero medio, non da W

10 µm per lacune, 20 µm per elettroni per $\Phi_{1-MeV n} = 10^{16}$ cm⁻²

 $1/\tau_{e,h} = \beta_{e,h} \times \Phi_{1-MeV n}$

 $\beta_{\rm e} = 5.7 \times 10^{-16} \, {\rm cm}^2/{\rm ns}$ $\beta_{\rm h} = 7.7 \times 10^{-16} \, {\rm cm}^2/{\rm ns}$

•Svantaggi:

•segnale basso nel range di basse fluenze - il segnale di una MIP è circa 3500 elettroni per uno spessore epitassiale di 50 μm

Strutture di silicio epitassiale

Silicio epitassiale cresciuto da ITME Spessore dello strato epi: 25, 50, 75 μm Resistività epi: ~ 50 Ω cm Resistività substrato Cz: < 0.02 Ω cm Ossigeno: [O] ~ 9 x 10¹⁶ cm⁻³ diffuso dal substrato Cz nello strato epi

•Non si osserva l'inversione del tipo del substrato in tutto il range di interesse per SLHC.

• Spiegazione proposta: il rate di introduzione dei donori termici compensa quello di accettori profondi ad alte fluenze

IFAE 30 Marzo – 1 Aprile 2005

Strutture di silicio assottigliato

ITC-IRST, Trento

Assottigliamento con attacco chimico (TMAH)

SEM: vista della superficie posteriore di un wafer assottiglito

MPI, Semiconductor Detector Laboratory, Munich

Lato superiore (sinistra) e inferiore (destra) dei dispositivi assottigliati

Area: 10 mm² e I<1 nA/cm² a 20 V

Confronto Epi- Si assottigliato

rivelatori di silicio spessi 50 μm

RD50

- silicio epitassiale (50 Ω cm su substrato CZ, ITME & CiS)
 - Fz assottigliato (4KΩcm, MPI Munich, tecnica di wafer bonding)

[E.Fretwurst et al.,RESMDD - October 2004]

- **Fz sottile:** substrato invertito, aumento della tensione di svuotamento col tempo
- Epi: senza inversione, diminuzione della tensione di svuotamento col tempo
 ⇒ Evita la necessità di mantenere i rivelatori a bassa T
 IFAE 30 Marzo 1 Aprile 2005

Segnale da silicio Epi irraggiato

- **Silicio epitassiale:** CCE misurata con particelle beta (⁹⁰Sr)
 - Shaping time di 25ns

RD50

Irraggiamento con neutroni e protoni di strati di Epi spessi 50 μm e 75 μm

[G.Kramberger, RESMDD, Oct.2004]

RD50

n-in-p: - senza inversione di tipo , la zone di campo elettrico elevato rimane sul lato impiantato, i portatori raccolti sono gli elettroni

- Mini-sensori a microstrip n-in-p (280μm) 1x1 cm²
- Rivelatori letti alla frequenza di LHC(40MHz) con il chip (SCT128A)
- Materiale : tipo p standard e tipo p ossigenato (DOFZ)

Alla più alta fluenza Q~6500e per V_{bias}=900V → S/N~7

Collaborazione SMART - INFN

RD50

Structures and Materials for Advanced Radiation hard Trackers

• Progetto finanziato dall'INFN - processo realizzato da IRST - Trento

RD50	SMART- produzione e irraggiamento
• Run I : p-on-n	Materiali: Fz, MCz, Epi
• Run II: n-on-p	Materiali: Fz, MCz
	-Isolamento delle striscie con la tecnica del p-spray
Irraggiamenti:	SPS Cern- protoni 23 GeV/c fino a fluenze di 5.5×10^{15} p/cm ⁻² .
	Ljubjiana – neutroni da reattore nucleare fino a fluenze di 10^{16} n/cm ⁻²

Studio delle prestazioni dei mini-sensori irraggiati con protoni da 23 GeV/c MCz p-in-n Fz e MCz n-in-p

RD50

Rivelatori 3-D

Elettrodi:

- Sottili colonne che attraversano lo spessore-"3D"
- diametro: 10μm distanza: 50 100μm
- Svuotamento laterale
 - Tensione di svuotamento minore
 - Possibilità di realizzare rivelatori più spessi
 - Raccolta veloce del segnale
- Realizzazione in RD50

Glasgow University
 Irraggiamento fino a 5x10¹⁴ p/cm² e 5x10¹⁴ π/cm²:
 V_{fd} = 19V; Diminuzione del 25% della CCE (particelle α)
 –IRST-Trento e CNM Barcelona

Problemi

- le colonne sono zone morte del rivelatore
- le zone fra colonne dello stesso tipo hanno un campo elettrico minore
- dubbi sulla possibilità di produzione di massa efficienza e costo

(Introduced by S.I. Parker et al., NIMA 395 (1997) 328)

Rivelatori 3-D Single Type Column

Collaborazione fra IRST-Trento e CNM Barcellona

- Singoli step di processo testati, lay-out completato, produzione iniziata
- Simulazione della raccolta di carica
 - Anche nel caso peggiore (particella incidente nella regione centrale fra due elettrodi) il tempo di raccolta di carica t< 10 ns

Architettura 3-D simplificata

- Colonne n⁺ in substrato di tipo p, backplane
 p⁺
- Funzionalità simile a quella dei 3-D standard

Processo semplificato

- Perforatura della colonna e doping in una sola fase per tutto il wafer
- Non è necessaria la tecnica del wafer bonding

•Materiali diversi e dispositivi innovativi sono sotto esame in RD50 per realizzare i nuovi tracciatori degli esperimenti a SLHC.

Lo studio è focalizzato sulle diverse problematiche che si presentano nel tracciatore dipendentemente dalla distanza dal punto di interazione
Nella regione esterna con fluenze fino a 10¹⁵cm⁻² il problema è costituito dall'area estesa da coprire e dall'evoluzione della tensione di svuotamento con la fluenza.

- Rivelatori di silicio MCz vengono esplorate le opzioni p-in-n e n-in-p
- Silicio di tipo p ossigenato S/N ~7 dopo 7x10¹⁵ pcm⁻²

 Nella regione interna con fluenze fino a 10¹⁶cm⁻² il problema è costituito dalla riduzione del cammino libero medio per la cattura dei portatori di carica da parte dei difetti

- Rivelatori EPI : è necessaria un'elettronica rad-hard per piccoli segnali
- **3D detectors** : tecnologia complessa difficile da standardizzare

IFAE 30 Marzo – 1 Aprile 2005

A.Macchiolo INFN Firenze

BACKUP SLIDES

IFAE 30 Marzo – 1 Aprile 2005

RD50

Da LHC a Super –LHC (II)

	LHC	SLHC	
Energia del fascio	7 Tev	12.5 TeV	
Rate di collisioni	40 MHz	80 MHz	
Luminosità istantanea	$10^{34} \text{ cm}^{-2} \times \text{s}^{-1}$	$10^{35} \text{ cm}^{-2} \times \text{s}^{-1}$	
Luminosità integrata	500 fb ⁻¹ (dopo 10 anni)	2500 fb ⁻¹ (dopo 5 anni)	

M. Huhtinen SLHC Electronics Workshop 26 February 2004

Da LHC a Super –LHC (I)

• **Danno da radiazione:** dopo 8-10 anni di presa dati i tracciatori degli esperimenti di LHC inizieranno ad avere prestazioni ridotte.

• **Potenziale di scoperta:** nel 2012 (dopo 2 anni al picco di luminosità di LHC) il tempo di dimezzamento degli errori statistici sale a circa 8 anni

Upgrade di LHC in tre fasi

nessuna modifica hardware	\rightarrow 2.6 10 ³⁴ cm ⁻² s ⁻¹
solo Atlas e CMS, aumenta $\rm N_b$	\rightarrow E=7.5 TeV

Fase 1: limitate modifiche hardware β^* diminuisce, aumenta # bunch

Fase 2: modifiche pesanti nuovi magneti ed iniettori → 9.6 10³⁴ cm⁻²s⁻¹ → E = 7.5 TeV

→ 2 10³⁵ cm⁻²s⁻¹ → E= 12.5 TeV

IFAE 30 Marzo – 1 Aprile 2005

RD50 | Effetto dell'ossigeno: il punto di vista microscopico

1) VO (difetto neutro) è un processo competitivo con VO+V=V₂O oppure con la formazione di V₂ (accettori profondi): VO è favorito da "alta" [O]:

 a. raggi γ: difetti localizzati (interstiziali I and vacanze V)
 [O]>>[V] (in DOFZ, MCZ e CZ): VO favorito, V₂O e V₂ soppressi
 b. Neutroni: difetti in clusters (regione ad alta densità di difetti)
 [O]<<[V] (Fz, DOFZ, MCZ and CZ): V₂O e V₂ vengono formati;
 c. Protons: condizione intermedia fra difetti localizzati e clusters

2) La formazione di donori termici durante l'irraggiamento è caratteristica di alta [O].

Livelli responsabili per la variazione della tensione di svuotamento dopo l'irraggiamento con protoni:

 I: livello di accettore profondo a E_C 0.54eV sviluppo proporzionale ∝ dose ²
 Buon candidato per il difetto V₂O
 ⇒ carica negativa

 Bistable shallow thermal <u>donor</u> (formed via oxygen dimers O_{2i})
 IFAE 30 Marzo – 1 Aprile 2005 tive charge

[I.Pintilie, RESMDD, Oct.2004]

RD50 S/N dopo l'irraggiamento per diverse strutture

 SCT:
 $\sigma \approx 600 + C^* 40 \approx 1500e^-$, n = 4 --> Thr $\approx 6,000e^-$

 Pixels:
 $\sigma = 260e^-$, $\delta Thr = 40e^-$ n = 5 --> Thr $\approx 1,300e^-$

			Signal / Threshold			
Radius Detector [cm]	tor Threshold [e ⁻]	Pre-Rad	After 1250 fb ⁻¹	After 2500 fb ⁻¹	Comment	
> 55	Long strips	6250	3.7	3.7	3.7	~ SCT n-on-p
20 - 55	Short strips	4400	5.3	3.9	3.2	n-on-p
8 cm	Thick Pixel	2000	11.5	5.5	3.0	n-on-p
5 cm	Thin Pixel	2000	3.0	1.5	1.0	Epi 75 μm
5 cm	3-D	2000	11.5	7.5	5.0	100 µm cells

IFAE 30 Marzo – 1 Aprile 2005

H. Sadrozinski

Modifica della parte interna del tracker di CMS

Summary

- Propose 3 Pixel Systems that are adapted to fluence/rate and cost levels
- Pixel #1 max. fluence system ~400 SFr/cm² 100 μ * 150 μ
- Pixel #2 large pixel system 160 μ * 650μ
 -100 SFr/cm²
- Pixel #3 large area system Macro-pixel ~40 SFr/cm² 200 μ * 5000 μ
- 8 Layer pixel system can eventually deal with 1200 tracks per unit pseudo – rapidity
- Use cost control and cheap design considerations from very beginning.
- Can this be done for 2012/13 ????

CMS: Inside out: "Fat" pixels, strips ATLAS Outside in: "Skinny" strips, pixels

R. Horisberger

MCZ n-type : neutron irradiation

IFAE 30 Marzo - 1 Aprile 2005

RD50

The minimum of V_{dep} is reached at 1-1.5×10¹⁴ n/cm².
V_{dep} is ≈650 at 10¹⁵ n/cm².

Materiale epitassiale

Evoluzione della tensione di svuotamento con la fluenza

The samples reach the minimum in V_{FD} after around 300 h at 20°C – ⁹⁰Sr signal meas.:

- It seems that the samples are of n-type also neutron irradiated samples!
- •Similar behavior of 50 and 75 μ m thick samples
- •Good reproducibility of V_{FD} for samples from different wafers (two proton irradiated samples to $26 \times 10^{14} \text{ cm}^{-2}$)!

IFAE 30 Marzo – 1 Aprile 2005

3D step di produzione

IFAE 30 Marzo – 1 Aprile 2005

Semi-3D detectors

Proposed by Z. Li (NIM A 478 (2002) 303). Single-side detectors with alternative pand n- strips on the front side.

Advantages:

- 1. Single-side detector process.
- 2. Depletion occurs from both sides after SCSI reducing the depletion voltage by factor 2.5.

Under investigation:

RD50

Complex electric field distribution before and after SCSI.

(Z. Li and D. Bortoletto, 4th RD50 Workshop, http://rd50.web.cern.ch/rd50/4th-workshop)