L'Interferometro Virgo

Michele Punturo INFN Perugia a nome della Collaborazione Virgo

Le onde gravitazionali all'IFAE?

• Cosa c'è di più di "Alta Energia" della gravitazione?

La collaborazione Virgo

•L'esperimento Virgo è realizzato da una collaborazione italo-francese

- Firenze/Urbino
- Frascati (LNF)
- Napoli
- Pisa
- Perugia
- Roma (Roma1)

- Annecy (LAPP)
- Lyon (IPNL)
- Orsay (LAL)
- Nice (ILGA/OCA)
- Paris (ESPCI)

Gravitation in the General Relativity

Linear approximation of the field equation is allowed

•A.Einstein proposed the linearized solution of the field equation in 1916 (wave propagating at speed c and with two polarizations):

Gravitational Waves

$$\frac{\Delta l}{l} \approx \frac{h(t)}{2}$$

 $\pi/2$

 π

Phase: 0

The Virgo Detector

The Vacuum System

- The largest high vacuum system in Europe:
 - About 7000 m³
 - 1.2 m diameter pipe @ 10^{-7} mbar (H₂ partial pressure) (~6km long)
 - Reduction of light fluctuation given by air flux
 - 7 long towers (9m long) with differential vacuum:
 - Usual 10⁻⁷ mbar vacuum in the upper part
 - 10⁻⁹ mbar in the lower part, where mirrors are located
 - Thermal noise reduction
 - Mirror contamination control
 - Short towers @ 10⁻⁷mbar

The seismic isolation

- What distinguishes Virgo from the competitors is the high sensitivity at low frequency
- In a GW detector, the low frequency range is dominated by seismic noise
- The typical spectral amplitude of the seismic ground vibration is

The Super-Attenuator

The Super-Attenuator

Last stage design

- The last stage has been designed to minimize the thermal fluctuation of the mirror
- The thermal noise is one of the fundamental limits to the Virgo sensitivity in the 5-500Hz frequency range
- Equi-partition theorem

• Fluctuation-Dissipation theorem

$$x_{therm}^{2}(\omega) = \frac{4k_{B}T}{\omega^{2}} \Re\left\{\frac{1}{Z(\omega)}\right\}$$

$$x_{therm}^{2}(\omega) = \frac{4k_{b}T}{m} \frac{\omega_{0}^{2}}{\omega} \frac{\phi(\omega)}{(\omega_{0}^{2} - \omega^{2})^{2} + (\phi(\omega)\omega_{0}^{2})^{2}}$$

Mirrors

- The Virgo mirrors are the largest (and more expensive) mirrors in the current GW detectors
- Very demanding requirements in term of absorption, birifrangence of the substrate and the coatings

The Virgo Commissioning

- The last large mirror have been mounted in July 2003
- Virgo is a complex machine that needs a deep tuning of many parameters
 - Methods and technologies to do that are completely new
 - Progresses in the commissioning of the machine are demonstrated by the improvement of the duty cycle and by the enhancement of the sensitivity

Commissioning plan

Phase A: Commissioning of interferometer arms

- Test all aspects of control systems with a simple optical configuration
 - locking, automatic alignment, second stage of frequency stabilization and
 - suspension hierarchical control (tidal and marionette)
- First shake of the sub-systems

Commissioning plan

Phase A: Commissioning of interferometer arms

- Test all aspects of control systems with a simple optical configuration
 - locking, automatic alignment, second stage of frequency stabilization and
 - suspension hierarchical control (tidal and marionette)
- First shake of the sub-systems

(((Q)))

Commissioning plan

Phase A: Commissioning of interferometer arms

- Test all aspects of control systems with a simple optical configuration
 - locking, automatic alignment, second stage of frequency stabilization and
 - suspension hierarchical control (tidal and marionette)
- First shake of the sub-systems

Phase B: Commissioning of interferometer in 'recombined mode'

- Useful intermediate step towards full interferometer lock
- Verify functioning of BS longitudinal control
- Re-run all aspects of control system in a more complex configuration
- Start noise investigations

(((Q)))

Commissioning plan

Phase A: Commissioning of interferometer arms

- Test all aspects of control systems with a simple optical configuration
 - locking, automatic alignment, second stage of frequency stabilization and
 - suspension hierarchical control (tidal and marionette)
- First shake of the sub-systems

Phase B: Commissioning of interferometer in 'recombined mode'

- Useful intermediate step towards full interferometer lock
- Verify functioning of BS longitudinal control
- Re-run all aspects of control system in a more complex configuration
- Start noise investigations

Phase C: Commissioning of Recycled Fabry-Perot interferometer

- Run full locking acquisition process
- Verify functioning of PR mirror longitudinal control
- Re-run SSFS, tidal control and marionette control
- Implement complete wave-front sensing control
- Continue noise investigations

(((0)))

Commissioning plan

Phase A: Commissioning of interferometer arms

- Test all aspects of control systems with a simple optical configuration
 - locking, automatic alignment, second stage of frequency stabilization and
 - suspension hierarchical control (tidal and marionette)
- First shake of the sub-systems

Phase B: Commissioning of interferometer in 'recombined mode'

- Useful intermediate step towards full interferometer lock
- Verify functioning of BS longitudinal control
- Re-run all aspects of control system in a more complex configuration
- Start noise investigations

Phase C: Commissioning of Recycled Fabry-Perot interferometer

- Run full locking acquisition process
- Verify functioning of PR mirror longitudinal control
- Re-run SSFS, tidal control and marionette control
- Implement complete wave-front sensing control
- Continue noise investigations

Phase D: Noise hunting

Sensitivity Improvement

Sensitivity in m / sqrt(Hz)

Noise Budget

Data Analysis

- Three kinds of GW sources are expected:
 - Periodic sources:
 - Pulsars with quadrupolar moment
 - Burst:
 - Non-axisymmetric Supernova explosions
 - Coalescing binaries
 - Pair of stars (Neutron stars or Black Holes) rapidly rotating around the center of mass

CB detection

- Coalescing binaries detection needs the development of a new analysis strategy
- Hypothesis:
 - The signal shape is well known
 - The post-Newtonian approximation of the signal
 - The noise of the ITF is (almost) stationary and gaussian
- Optimal filtering method:
 - Wiener (or matched) filtering
 - Correlator in time space
 - "product" in frequency

Detection Strategy

- The star masses are unknown parameters
 - we don't know the optimal filter, but we can parametrize it
- Detection Strategy:
 - we define a priori the signal-to-noise that we can accept to loose respect to the optimal one (ambiguity function):
 - we select a frequency range, imposed by the apparatus sensitivity, where to detect the CB signal (25-1000 Hz)
 - We build-up a "templates" grid (about 45000 templates); the grid step is selected in such a way the SNR lost is below the defined threshold
 - We perform the matching (correlators) between the ITF output and all the templates
 - All the matching above threshold, are cross-checked with a sort of χ^2 test

•Cluster BeoWulf of 23 Opteron 2GHz bi-processor

Time [h]

Conclusions

- The Virgo detector commissioning is under way
- Firs science run is expected for the end of 2005
 beginning of 2006
- The Data Analysis procedures are under development and testing