IFAE – Catania 30 Marzo – 2 Aprile 2005 Carla Distefano

Rivelazione di neutrini astrofisici di alta energia

Why neutrino astronomy?

The detection of high energy gammas and CR are milestones in modern astrophysics but there are still open questions:

- Particle acceleration mechanism in astrophysical sources
- Identification of high energy CR sources
- Solution of UHECR puzzle
- Heavy dark matter content in the Universe
- Neutrinos traverse space without being deflected or attenuated
 - They point back to their sources
 - They allow to view into dense environments
- Neutrinos are produced in high energy hadronic processes
 - They can allow distinction between hadronic and leptonic acceleration mechanisms

Neutrino production in cosmic accelerators

Halzen

electrons are responsible for gamma fluxes (synchrotron, IC)

Possible extragalactic sources and fluxes

The observation of TeV neutrino fluxes requires km² scale detectors

C.Distefano

Neutrino telescopes brief history

- 80's: DUMAND R&D
- 90's: BAIKAL, AMANDA, NESTOR
- 2k's: ANTARES, NEMO R&D
- 2010: ICECUBE

Mediterranean KM3 ...

BAIKAL Mediterranean km³ DUMAND HITT INT **AMANDA ICECUBE**

IFAE, Catania 30 Marzo-2 Aprile 2005

The pioneer experiment: BAIKAL

Baikal-NT: 192 OM arranged in 8 strings, 72 m height effective area >2000 m² (E_{μ} >10 GeV)

successfully running since 10 years atmospheric neutrino flux measured

Depth max 1300m Blue light absorption length ~20 m No ⁴⁰K but high bioluminescence rate

The largest detector up to date: AMANDA

Results from AMANDA: atmospheric neutrino flux

Atmospheric neutrinos constitute the main background when searching for extraterrestrial neutrinos, but are also a natural calibration source.

Spiering, astro-ph/0503122

Results from AMANDA: diffuse flux

Up-going v_{μ} : $E_{\nu}^{2}\phi_{\nu}(E_{\nu})<2.6\cdot10^{-7} \text{ GeV/cm}^{2} \text{ s sr}$ Cascades $v_{e}+v_{\mu}+v_{\tau}$: $E_{\nu}^{2}\phi_{\nu}(E_{\nu})<8.6\cdot10^{-7} \text{ GeV/cm}^{2} \text{ s sr}$ Horizontal UHE $v_{e}+v_{\mu}+v_{\tau}$: $E_{\nu}^{2}\phi_{\nu}(E_{\nu})<9.9\cdot10^{-7} \text{ GeV/cm}^{2} \text{ s sr}$

100 TeV< E_{v} <300 TeV

50 TeV< E_v <5 PeV

1 PeV< E_v <3 EeV

Spiering, astro-ph/0503122

Results from AMANDA: point-like sources

2000-2003 AMANDA sky plot: 3369 events

No evidence for point-like sources with an E_v^{-2} energy spectrum based on the first four years of AMANDA-II.

The strongest excess was observed from the direction of the Crab nebula, with 10 events where 5 are expected.

A much larger array like IceCube is necessary.

Spiering, astro-ph/0503122

M. Ackermann, et al, 2004, submitted to PRD

Candidate	$\delta(\circ)$	α (h)	$n_{\rm obs}$	n_b	$\Phi_{\prime\prime}^{\lim}$
TeV Blazars	. /			_	~
Markarian 421	38.2	11.07	0	1.35	0.34
Markarian 501	39.8	16.90	3	1.31	1.49
1ES 1426+428	42.7	14.48	2	1.13	1.16
1ES 2344+514	51.7	23.78	1	1.25	0.82
1ES 1959+650	65.1	20.00	0	1.59	0.38
GeV Blazars					
QSO 0528+134	13.4	5.52	1	1.88	0.57
QSO 0235+164	16.6	2.62	3	2.15	1.12
QSO 1611+343	34.4	16.24	0	1.66	0.31
QSO 1633+382	38.2	16.59	1	1.33	0.75
QSO 0219+428	42.9	2.38	0	1.15	0.37
QSO 0954+556	55.0	9.87	2	1.04	1.50
QSO 0716+714	71.3	7.36	3	0.93	1.91
Microquasars					
SS433	5.0	19.20	1	2.21	0.55
GRS 1915+105	10.9	19.25	3	1.84	1.26
GRO J0422+32	32.9	4.36	2	1.49	1.08
Cygnus X1	35.2	19.97	0	1.59	0.31
Cygnus X3	41.0	20.54	1	1.26	0.75
XTE J1118+480	48.0	11.30	1	1.12	0.80
CI Cam	56.0	4.33	2	1.05	1.44
LS I +61 303	61.2	2.68	5	1.67	2.43
SNR, magnetars & miscellaneous					
SGR 1900+14	9.3	19.12	2	1.78	0.94
Crab Nebula	22.0	5.58	4	1.86	1.43
Cassiopcia A	58.8	23.39	2	1.12	1.38
3EG J0450+1105	11.4	4.82	1	1.83	0.59
M 87	12.4	12.51	3	1.83	1.24
Geminga	17.9	6.57	2	2.06	0.81
UHE CR Triplet	20.4	1.28	0	2.15	0.20
NGC 1275	41.5	3.33	1	1.14	0.78
Cyg. OB2 region.	41.5	20.54	1	1.14	0.78
UHE CR Triplet	56.9	12.32	1	1.17	0.93

 ϕ_v^{lim} in 10⁻⁸ cm⁻² s⁻¹, E_v>10 GeV, α =2

The future of underice neutrino telescope: ICECUBE

The technology for underice detectors is well established. The next step is the construction of the km3 detector ICECUBE.

80 strings (60 PMT each) 4800 10" PMT (only downward looking) 125 m inter string distance 16 m spacing along a string Instrumented volume: 1 km³ (1 Gton) First string deployed Jan 2005

IceCube will be able to identify μ tracks from ν_{μ} for $E_{\nu} > 10^{11}$ eV cascades from ν_{e} for $E_{\nu} > 10^{13}$ eV ν_{τ} for $E_{\nu} > 10^{15}$ eV

Observation time for up-going neutrino events

Candidate sites for the km³

NESTOR

NESTOR aims at installing a "tower" equipped with optical modules of \approx 20.000 m² detection area.

745 atmospheric muon events reconstructed

ANTARES

ANTARES is installing a 0.1 km² demonstrator detector close to Toulon

ANTARES deployed Line0 and Milom, underwater connection Apr. 2005.

C.Distefano

NEMO

The **NEMO** Collaboration is dedicating a special effort in:

- search, characterization and monitoring of a deep sea site adequate for the installation of the Mediterranean km³;
- development of technologies for the km³ (technical solutions chosen by small scale demonstrators are not directly scalable to a km³).

Seawater optical properties in Toulon and Capo Passero

Optical properties have been measured in joint ANTARES-NEMO campaigns in Toulon and in Capo Passero (July-August 2002)

- Absorption lengths measured in Capo Passero are close to the optically pure sea water data
- Differences between Toulon and Capo Passero are observed for the blue light absorption

Capo Passero: Optical background

Optical background was measured in Capo Passero with different devices. Data are consistent with 30 kHz background on 10" PMT at 0.3 spe (mainly ⁴⁰K decay, very few bioluminescence).

Optical data are consistent with biological measurements: No luminescent bacteria have been observed in Capo Passero below 2500 m

Bioluminescent bacteria concentration 100 ml⁻¹

Toulon: Optical background measured by prototype line

Baseline rate: median of rate in 15 min for 65 days

Quiet phases (10 days): 60 kHz

Capo Passero site characteristics

- Light absorption lengths (~70 m @ 440 nm) are compatible with optically pure sea water values. Measured values of optical properties are constant through the years (important: variations on L_a and L_c will directly change the detector effective area)
- Optical background is low (consistent with ⁴⁰K background with only rare occurrences of bioluminescence bursts)
- The site location is good (close to the coast, flat seabed for hundreds km², far from the shelf break and from canyons, far from important rivers)
- Measured currents are low and regular (2-3 cm/s average; peak value <12 cm/s)
- The Sedimentation rate is low (about 60 mg m⁻² day⁻¹)
- No evidence of recent violent events from core analysis (last 60000 years ago)

Present proposal for Detector Layout

Changes: distances, number of towers, tower length, shape (hexagonal), ...

The NEMO tower

The NEMO tower is a semi-rigid 3D structure designed to allow easy deployment and recovery. High local PMT density is designed to perform local trigger.

C.Distefano

Comparison "tower detector" in Mediterranean vs IceCube

81 towers arranged in 9x9 lattice 140 m between towers for a total of 5832 PMTs optical background 30 kHz optical properties of Capo Passero 80 strings (60 PMT each) 4800 10" PMT (only downward looking) 125 m inter string distance 16 m spacing along a string

IFAE, Catania 30 Marzo-2 Aprile 2005

Comparison "tower detector" in Mediterranean vs IceCube

81 towers arranged in 9x9 lattice 140 m between towers for a total of 5832 PMTs optical background 30 kHz optical properties of Capo Passero 80 strings (60 PMT each) 4800 10" PMT (only downward looking) 125 m inter string distance 16 m spacing along a string

Simulations of NEMO detector performed with the ANTARES simulation package

IFAE, Catania 30 Marzo-2 Aprile 2005

Comparison "tower detector" in Mediterranean vs IceCube

Preliminary results for the NEMO sensitivity to a E_v^{-2} neutrino spectrum from a point-like source.

The NEMO test site in Catania

The NEMO test site: a multidisciplinary laboratory

First data from 2000 m

- GEOSTAR SN-1, a deep sea station for on-line seismic and environmental monitoring by INGV. The NEMO test site is the Italian site for ESONET (European Seafloor Observatory NETwork);
- OvDE, for on-line deep sea acoustic background monitoring.

GEOSTAR SN-1 deep sea station

Sperm whale clicks (echo localization)

The NEMO Phase 2 project in Capo Passero

PROPOSED INFRASTRUCTURE

- Shore station at Portopalo di Capo Passero to host the power system the data acquisition and detector integration facilities
- 100 km electro optical cable
- Underwater infrastructures (main junction box)
- Two intermediate connection stations in shallow and medium deep waters for interdisciplinary activities (agreement with INGV and SACLANTCen)

STATUS

- Project already funded
- Procedures for the purchase of EO cable (≈48 optical fibres, 30÷40 kW) started
- Procedures for the acquisition of an already existing building, to be renovated and used as shore station, approved by INFN
- Project to be completed in two years

Summary

- **Baikal and AMANDA have demonstrated the feasibility of the high energy** neutrino detection;
- The forthcoming km³ neutrino telescopes are "discovery" detectors with high potential to solve HE astrophysics basic questions:
 UHECR sources, HE hadronic mechanisms, Dark matter ...
- To fully exploit neutrino astronomy we need two km3 scale detectors, one for each hemisphere;
- The under-ice km³ ICECUBE is under way, following the AMANDA experience;
- The Mediterranean km³ neutrino telescope, when optimized, will be an powerful astronomical observatory thanks to its excellent angular resolution;
- The feasiblity of km^3 detectors at depth \approx 3500 m is widely accepted;
- **ANTARES** deployed Line0 and Milom, underwater connection Apr. 2005;
- **NEMO** started Test Site installation.

The Mediterranean km³ detector potentials and payoffs

- Structures can be recovered:
 - The detector can be maintained
 - The detector geometry can be reconfigured

The underwater telescope can be installed at depth \geq 3500 m

Muon background reduction

Light effective scattering length (>100 m) is much longer than in ice (20 m)

Cherenkov photons directionality preserved

Light absorption length in water (70 m) is smaller than in ice (100 m)

Less Cherenkov photons detected

⁴⁰K decay in water + bioluminescence

Optical background and dead time increased

Sediments and fouling

Optical modules obscuration \rightarrow maintenance

Towards the Mediterranean km³: technological challenges

electro optical cable: construction and deployment

Electronics

Power Distribution

Underwater connections

Data transmission system

Detector: design and construction deployment and recovery

Power transmission

system

Acoustic positioning

IFAE, Catania 30 Marzo-2 Aprile 2005

C.Distefano

km³ technological challenges: data transmission system

Data transmission goals

- Transmit the full data rate with minimum threshold
- Only signal digitization should be performed underwater
- All triggering should be performed on shore
- Reduce active components underwater

Assuming

- An average rate of 50 kHz (40K background) on each OM
- Signal sampling (8 bits) at 200 MHz
- Signal length of 50 ns (true for 40K signals) → 10 samples/signal

5 Mbits/s rate from each OM \rightarrow 25 Gbits/s for the whole telescope (5000 OM)

Rate affordable with development and integration of available devices for telecommunication systems

km³ technological challenges: data transmission system

Possible architecture for the km3 detector

Based on DWDM and Interleaver techniques

First Multiplation Stage (Tower base):

 16 Channels coming from the 16 tower floors. The channels are multiplexed in one fibre at the base of each tower.

Second multiplation stage (secondary JB):

- 32 channels coming from a couple of tower are multiplexed with an interleaver;
- The output is a single fibre for each of the four couples of towers.

All the fibres coming from the secondary JB go directly to shore (connection to the main electro-optical cable inside the main JB)

Mostly passive components

Very low power consumption