Ultra High Energy Cosmic Rays Astrofisical Sources

Roberto Aloisio

INFN – Laboratori Nazionali del Gran Sasso

Incontri di Fisica delle Alte Energie 30 Marzo – 2 Aprile 2005, Catania

UHECR and CMB: the GZK feature

Observational picture... AGASA vs HiRes

Source Number Density

Using the small angle clustering it is possible to have indications about the source number density n_S

As n_s decreases, for fixed flux, sources become brighter

Increased clustering probability

At most one source in the angular bin of 3 degrees! The sources should have been seen in particular at 3 10²⁰ eV

BURSTING SOURCES??? or <u>TOP DOWN</u>???

Using many source realizations (MC)

 $n_s \approx 10^{-5} Mpc^{-3}$

Blasi & De Marco (2003) Kachelriess & Semikoz (2004) 40 sources within 100 Mpc (~20 degrees between sources)

Shock Acceleration

Time for energy losses

Time of escape from the acceleration region $R^2/D(E)$

Relativistic Shocks

The main complication is due to the <u>ANISOTROPY</u> of the distribution function around the shock!

$$\delta \mu = \left[-1 + \frac{1 + 3\beta_{rel}}{3 + \beta_{rel}} \right] \approx \frac{1}{4} \frac{1}{\gamma_{rel}^2}$$

First Interaction

when the particle distribution upstream is still isotropic, a reflection U-D-U can increase the energy of the particle by a factor Γ_{ral}^{2} in one shot

Further interactions

Most particles have μ =-1 therefore the typical energy gain is ~1. The acceleration time is of order

$$\tau_{acc} \approx \frac{r_L(E)}{\gamma_{sh}c}$$

The maximum energy is calculated by equating the times for acceleration and losses (or escape)

Recently, Vietri (2003) introduced a new and powerful approach to particle acceleration at a shock with arbitrary speed.

In Blasi & Vietri (2004) an analytical method was proposed that gives both the spectrum and the anisotropy of the accelerated particles for an arbitrary shock speed and arbitrary scattering properties of the medium.

Shock acceleration at newtonian shock

Shock acceleration at relativistic shocks

Radio Lobes [Rachen & Biermann] AGN's [Berezinsky et al. 02]

•••

Gamma Ray Bursts [Waxman 95, Vietri 95]

Intergalactic Magnetic Fields

Very poor experimental evidences

Faraday rotation

$$RM \propto \int_{s} \vec{B}(s) \cdot \vec{ds} n_{e}(s)$$

The limits from RM are on the component of B parallel to the line of sight. This depends on field topology !

Synchrotron and ICS emission

In clusters of galaxies the field inferred in this way is about ~0.1-1.0 μG (e.g. Coma)

Numerical simulations

Numerical determination of the IMF is based on LSS and MHD simulations

Puzzling results by different groups

Dolag, Grasso, Springel & Tkachev use constrained simulations, being able to reproduce the local Universe

Low B (0.1 nG in filaments and 0.01 nG in voids)
 Low deflection angles: < 1° at 4 10¹⁹ eV
 UHECR astronomy is allowed

Sigl, Miniati & Ensslin use an unconstrained simulation putting the observer * close to a cluster

- High B (100 nG in filaments and 1 nG in voids)
- ★ High deflection angles: up to 20° at 10²⁰ eV
- 👷 UHECR astronomy nearly impossible

UHECR Propagation in IMF

Diffusive Spectrum

The UHECR propagation can be described by a diffusion equation

diffusion coefficient

injection spectrum

In the case in which Q, D, b depend only on energy

$$n(E,r) = \frac{1}{b(E)} \int_{E}^{E_{max}} dE_{g} Q(E_{g}) \frac{\exp[-r^{2}/4\pi\lambda(E,E_{g})]}{[4\pi\lambda(E,E_{g})]^{3/2}}$$
$$\lambda(E,E_{g}) = \int_{E}^{E_{g}} d\epsilon \frac{D(\epsilon)}{b(\epsilon)}$$
Syrovatskii (1959)

From the turbulent spectrum of IMF assuming $B = B_0$ on the scale l_2

$$D(E) = D_0 \left(\frac{E}{E_c}\right)^{\alpha} \qquad E \le E_c$$

$$D(E) = D_0 \left(\frac{E}{E_c}\right)^2 \qquad E > E_c$$

$$D_0 = \frac{1}{3} l_c c \qquad \text{We used } \alpha = 1/3$$
(Kolmogorov)
$$r_L(E_c) = l_c \qquad \alpha = 1 \text{ (Bohm) and } \alpha = 2$$

Diffusion approximation

$$t_{pr} = \frac{r^2}{D(E)} \ge t_{rec} = \frac{r}{c}$$
$$r > r_{min} \approx \frac{1}{3} l_d = \frac{D(E)}{c}$$

Otherwise rectilinear propagation

Diffusion at high energies

Propagation Theorem

For a uniform distribution of identical sources with separation much less than the characteristic propagation lengths, the UHECRs spectrum does not depend on the magnetic field (universal spectrum)

Diffusion at low energies

 $\log \left[E^3 J(E) \quad (eV^2/(m^2 \operatorname{s sr})) \right]$

The Future

Pierre Auger Observatory

1600 <u>Cherenkov tanks</u> covering 3000 Km² (spacing 1.5 Km) 24 <u>Fluorescence detector</u> (4 peripheral eyes, 6 telescopes each)

Full sky coverage: one observatory in the north hemisphere and one in the south (now under construction).

De Marco, Blasi & Olinto (2003)

Auger performances		
	Surface detector (SD)	Hybrid (SD and Fluorescence)
$E > 10^{19} eV$	5150/ <i>y</i>	515/y
$E > 5 \times 10^{19} eV$	7 490/y	49/ <i>y</i>
$E > 10^{20} eV$	103/ <i>y</i>	10/ <i>y</i>
$E > 5 \times 10^{20} eV$	7 10/y	1/ <i>y</i>

Extreme Universe Space Observatory

Fluorescence signal from above EUSO will sit on the ISS and detect the fluorescence light from the showers developing in the atmosphere

De Marco, Blasi & Olinto (2003)

Euso Performances

 $E > 5 \times 10^{20} eV$ 200-300/y

EUSO should be able to see ALL or MOST sources of UHECRs above 10²⁰ eV (within the GZK horizon)

Conclusions

- **1.** The GZK feature in the spectrum of UHECRs is controversial. HiRes does see a suppression which is consistent with the GZK feature, AGASA presents an excess at high energy difficult to reconcile with the GZK feature.
- 2. The DIP present at $E \sim 10^{19}$ eV in both the HiRes and AGASA spectra is a strong evidence in favor of extragalactic protons from astrophysical sources at $E > 10^{18}$ eV.
- **3.** The existence of Intergalactic Magnetic Fields is still an open question. UHECRs spectrum is affected by IMF, using diffusive approximation:

High Energy	suppression of the GZK feature (very high B~1 μG)	
Low Energy	low energy cut-off $E \le 10^{18} eV$ (B independent),	
	single power law at injection γ_g =2.7 (B~1 nG),	
	transition form hevy to ligth composition at $E \sim 10^{18}$ eV.	

- 4. The small scale anisotropies detected by AGASA give the first hint on the sources density.
- 5. The Auger and Euso observations are fundamental to accumulate statistics and sky coverage. This data will solve the GZK puzzle providing informations about the IMF intensity, if this is small (B \leq 1 nG) Astronomy with UHECRs will be possible.