Neutrini Cosmogenici e segnali di nuova fisica ai futuri telescopi di neutrini

Davide Meloni

INFN Sezione di Roma1

IFAE- Incontri di fisica delle alte energie

Catania, 30 Marzo-2 Aprile 2005

Struttura della presentazione

• Introduzione: i neutrini cosmogenici $\begin{cases} cosa \ sono \\ stima \ dei \ flussi \end{cases}$

Fisica oltre il Medello Standard può innalzare le sezioni d'urto dei neutrini scenari con dimensioni extra:

{ interazione elastica mediata da gravitoni
 formazione di buchi neri

- Dati attuali su sciami adronici altamente penetranti: limiti sulla massa di Planck in 4+n dimensioni
- Eventi "Tev-gravity" ai telescopi di neutrini

 $\left\{ \begin{array}{l} numero \ di \ eventi, \ distribuzioni \ in \ energia \ e \ in \ angolo \\ limiti \ su \ M_D \ in \ assenza \ di \ signale \\ confronto \ con \ limiti \ da \ altri \ esperimenti \end{array} \right.$

Introduzione

I Neutrini Cosmogenici sono intimamente connessi ai raggi cosmici di alta energia

$\phi \sim E^{-\alpha}$

prima del "knee" ($\alpha = 2.7$): esistono meccanismi astrofisici che accelerano gli adroni fino a $E \sim 10^{15}$ eV

knee ($\alpha = 3.2$): potrebbe riflettere il fatto che qualche acceleratore cosmico ha raggiunto il suo massimo

ankle ($\alpha = 2.8$): raggi cosmici di origine extragalattica

MA

problemi per protoni di origine extragalattica con $E_{GZK}\approx 5\times 10^{19}~{\rm eV}$

Introduzione

il processo $p + \gamma_{2.7\text{K}} \rightarrow \Delta^+ \rightarrow n + \pi^+ (p + \pi^0)$ dovrebbe produrre un cut-off nello spettro

possibili spiegazioni scenari "bottom-up" (estensione dei convenzionali meccanismi di acc

(estensione dei convenzionali meccanismi di accelerazione ad ambienti astrofisici particolari: buchi neri supermassivi, stelle di neutroni ...)

scenari "top-down"

(le particelle energetiche provengono da decadimenti di particelle massive formatesi nell'universo primordiale)

soffermiamoci sui neutrini prodotti via $\pi^+ \rightarrow \mu^+ \nu$

sono interessanti per due ragioni

- "forniscono" elevate energie nel centro di massa (ben oltre le possibilità di presenti e futuri acceleratori)
- eventuali effetti di nuova fisica sono più visibili nelle interazioni di neutrini che in quelle che coinvolgono quark e leptoni carichi

i neutrini cosmogenici sono utili per sondare fisica oltre il Modello Standard

Il flusso dei neutrini cosmogenici

$$p + \gamma_{2.7\mathrm{K}} \to \Delta^+ \to n + \pi^+ (p + \pi^0)$$

 $\hookrightarrow \mu \nu$

risulta essere correlato con

rate di produzione dei nucleoni primari
flusso di fotoni dai decadimenti del π^0

EGRET: flusso di γ -ray extragalattici; -dalle misure di EGRET (ϕ_{EG}) si può dedurre il flusso di ν cosmogenici

-i numeri si riferiscono al contributo dei γ da π^0 decay (ϕ_γ in verde) al flusso misurato da EGRET

-le curve rosse rappresentano le stime per i flussi di ν cosmogenici

$$(\nu_e: \nu_\mu: \nu_\tau = 1:1:1)$$

ci focalizzeremo sui flussi per i quali valga $\phi_{\gamma}/\phi_{EG}=1$ (860 down-going u) e 0.2 (370)

Scenari di nuova fisica con dimensioni extra

- la gravità descrive la geometria di uno spazio-tempo D = 4 + n dimensionale
- c'è una sola scala di energia per le interazioni delle particelle: la scala di Planck D-dimensionale M_D

dato R= raggio delle n extra dimensioni compattificate

$$\mathbf{r} > \mathbf{R} \qquad \mathbf{F} = -\frac{1}{\mathbf{M}_{\mathbf{P}}^{2}} \frac{1}{\mathbf{r}^{2}} \\ \mathbf{r} < \mathbf{R} \qquad \mathbf{F} \propto -\frac{1}{\mathbf{M}_{\mathbf{D}}^{n+2}} \frac{1}{\mathbf{r}^{n+2}}$$

$$M_{P}^{2} \sim R^{n} M_{D}^{n+2}$$

una piccola costante di Newton si ottiene per $M_D = O(1)TeV + grande R$

la gravità domina le interazioni degli UHECR

n	R	R^{-1}
1	10^9 Km	10^{-20} eV
2	0.1 mm	10^{-3} eV
3	$10^{-6} \mathrm{mm}$	100 eV
6	10^{-11} mm	10 MeV

 \sim ai limiti sperimentali sulla deviazione dalla legge di Newton

Scenari con questi valori di n possono essere testati sia ai colliders che in processi di rilevanza astrofisica e/o cosmologica

La sezione d'urto Neutrino-Nucleone

- in assenza di dimensioni extra $\longrightarrow \sigma^{\nu N}$ è quella del Modello Standard
- se esistessero dimensioni extra, la $\sigma^{
 u N}$ riceverebbe nuovi contributi

di seguito analizzeremo il **REGIME TRANSPLANCKIANO**

 $s >> M_D^2$ (a livello partonico)

i neutrini cosmogenici soddisfano tale relazione

processi anelastici

nei quali il neutrino viene distrutto o perde la maggior parte della sua energia; sono processi di corta distanza: i parametri di impatto sono tipicamente più piccoli di R_S \downarrow presumibilmente si formano *buchi neri*

processi elastici

nei quali il neutrino trasferisce al partone una piccola frazione della sua energia e prosegue la sua corsa;

sono processi di larga distanza: i parametri di impatto sono tipicamente più piccoli di R_S

la sezione d'urto viene stimata con l'*approssimazione eiconale*

in entrambi i casi il segnale sperimentale è costituito da cascate adroniche visibili in ground-arrays

e telescopi di neutrini

Interazioni elastiche mediate da gravitoni

Amati et al. [Phys.Lett B 197, 81 (1987)]; Giudice et al. [Nucl.Phys.B 630:293-325,2002]; Kabat and Ortiz [Nucl.Phys.B 388, 570 (1992)] approssimazione eiconale: $y = \frac{E_{\nu} - E_{\nu}'}{E_{\nu}} = -\frac{t}{s} \ll 1$

In teoria dei campi, questo corrisponde a sommare una serie infinita di diagrammi di Feynman

• tree-level exchange di un gravitone D-dimensionale

$$\mathcal{M}_{\text{Born}}(q_{\perp}^2) = -\frac{\hat{s}^2}{M_D^{n+2}} \int d^n k_T \frac{1}{t - k_T^2}$$

 k_T = momento lungo le dimensioni extra

$$= \frac{\hat{s}^2}{M_D^{n+2}} \pi^{\frac{n}{2}} (-\hat{t})^{\frac{n}{2}-1} \Gamma\left(1-\frac{n}{2}\right)$$

• one-loop exchange di gravitoni D-dimensionali

$$\mathcal{M}_{1-\text{loop}}(q_{\perp}) = \frac{i}{4\hat{s}} \int \frac{d^2 k_{\perp}}{(2\pi)^2} \mathcal{M}_{\text{Born}}(k_{\perp}^2) \mathcal{M}_{\text{Born}}((q_{\perp} - k_{\perp})^2)$$

convoluzione di ampiezze di Born

diagrammi con due vertici $GG\Phi\Phi$ sono soppressi da potenze di t/sdiagrammi con un vertice $GG\Phi\Phi$ e due vertici $G\Phi\Phi$ sono nulli

Interazioni elastiche mediate da gravitoni

sommiamo i contributi

$$\mathcal{M}_{\text{eik}} = \mathcal{M}_{\text{Born}} + \mathcal{M}_{1-\text{loop}} + \dots = -2i\hat{s}\int d^2b_{\perp} e^{iq_{\perp}\cdot b_{\perp}} \left(i\chi - \frac{1}{2}\chi^2 + \dots\right) \begin{cases} \text{ricostruisco l'esponenziale} \\ \text{nella fase eiconale } \chi \\ \chi(b_{\perp}) \equiv \frac{1}{2\hat{s}}\int \frac{d^2q_{\perp}}{(2\pi)^2} e^{-iq_{\perp}\cdot b_{\perp}} \mathcal{M}_{\text{Born}}(q_{\perp}^2) \end{cases}$$

$$\mathcal{M}_{\text{eik}} = -2i\hat{s} \int d^2 b_{\perp} e^{iq_{\perp} \cdot b_{\perp}} \left(e^{i\chi} - 1 \right) \Rightarrow \underline{\mathcal{M}_{eik}}(\hat{s}, q) = 4\pi \hat{s} b_c^2 F_n(b_c q)$$

$$F_n(b_c q) = -i \int_0^\infty \mathrm{d} z \,\, z \,\, J_0(z \, b_c q) \left(e^{i z^{-n}} \,-\, 1
ight)
onumber \ z = rac{b}{b_c} \qquad b_c \equiv \left[rac{(4\pi)^{rac{n}{2} - 1} \Gamma \left(rac{n}{2}
ight) \hat{s}}{2M_D^{n+2}}
ight]^{rac{1}{n}}$$

$$\frac{d\sigma_{\rm eik}}{dy} = \int_{M_D^2/s}^1 dx \ xs \ \pi b_c^4(xs) \left| F_n(b_c q) \right|^2 \sum_{i=q,\bar{q},g} f_i(x,\mu)$$

 $-E_{\nu} = 10^{10}$ GeV (linea tratteggiata), 10^{12} and 10^{14} GeV (linea continua)

$$-\sigma_{el} \sim s^{2/n}$$

-per piccoli *n*: grande sezione d'urto ma soft

-obs: σ_{eik} non dipende dal raggio R

La sezione d'urto per black-hole production

Quando $y \rightarrow 1 \ (b \rightarrow R_S)$

$$\begin{matrix} le \ autointerazioni \ dei \ gravitoni \ diventano \ importanti \\ \downarrow \\ grandi \ correzioni \ all'approssimazione \ eiconale \\ \downarrow \\ presumibilmente \ si \ formano \ buchi \ neri \ quando \ b < R_S \end{matrix}$$

questo suggerisce che la sezione d'urto a livello partonico sia di tipo geometrico $\hat{\sigma}\approx\pi\,R_S^2(\hat{s},M_D,n);$

$$\sigma_{\rm BH} = \int_{M_D^2/s}^{1} dx \ \pi R_s^2(\hat{s}, M_D, n) \sum_{i=q, \bar{q}, g} f_i(x, \mu)$$

- $\sigma_{BH} \sim s^{1/n+1}$

- abbiamo assunto che la massa minima dei buchi neri sia ${\cal M}_D^2$

- nota: la σ geometrica é stata ampiamente criticata dato che effetti come momento angolare e carica dei bc...potrebbero rendere tale stima troppo semplicistica

Fenomenologia: sciami adronici nell'atmosfera

- le $\sigma_{NF}^{\nu N} > \sigma_{MS}^{\nu N}$ di almeno un ordine di grandezza \downarrow il numero di sciami adronici è maggiore - sono comunque più piccole delle σ^{pN} \downarrow gli sciami di neutrini sono facilmente distinguibili da quelli iniziati dagli adroni:

distinguibili da quelli iniziati dagli adroni: sono quasi orizzontali e vicini al detector

Gli sciami possono essere osservati in ground arrays (AGASA) e detector a fluorescenza (Fly's eye)

dai risultati di AGASA \oplus Fly's Eye un limite superiore di 3.5 eventi al 95% CL \Longrightarrow Limiti su M_D

 $N_{eik} + N_{BH} < 3.5 \Rightarrow M_D > \dots (TeV)$

	M_D
n=2	1.0
flusso ottimista	
n=6	1.5
n=2	0.6
flusso pessimista	
n=6	0.8

Eventi di "TeV-gravity" ai telescopi di neutrini

Telescopi di neutrini: insieme di fotomoltiplicatori sensibili alla luce Cherencov emessa dalle particelle degli sciami

-
$$P_{\text{surv}}(E_{\nu}, \theta_z) = e^{\left[-X(\theta_z)N_A(\sigma_{SM} + \sigma_{BH})\right]}$$

con $X(\theta_z) = \rho_0 d(\theta_z, d_v)$

$$-P_{int}(E_{\nu}) = 1 - \exp[-L \rho \sigma N_A]$$

$$\frac{dN}{dE_{\nu}} = 2\pi AT \sum_{i=1,2,3} \sum_{\nu_i,\bar{\nu}_i} \frac{d\phi_{\nu_i}}{dE_{\nu}} \int d\cos\theta_z P_{\text{surv}}(E_{\nu},\theta_z) P_{\text{int}}(E_{\nu})$$

 $\label{eq:lceCube} \begin{array}{l} \mbox{IceCube} \left\{ \begin{array}{l} \mbox{d}_{v} = 1.8 \; (1.35 - 2.35) \; \mbox{Km} \\ \mbox{(L, A)} = (1 \; \mbox{Km}, 1 \; \mbox{Km}^2) \\ \mbox{E}_{thr} = 500 \; \mbox{TeV} \end{array} \right.$

calcolo del numero di eventi attesi con M_D al limite inferiore stimato in precedenza

Eventi di "TeV-gravity" ad IceCube

J.Illana, M. Masip and D.M., Phys.Rev.Lett. 93 (2004) 151102; anche hep-ph/0504...(presto sul web) segnale: sciami adronici da evaporazione di BH e da scattering elastico fondo dal Modello Standard: sciami adronici da interazioni di neutrino a corrente carica e neutra; sciami elettromagnetici da interazioni a corrente carica di ν_e

numero totale di eventi (flusso ottimista, n=2 (6))

$$N_{sh}^{SM} = 1.3$$
 $N_{sh}^{eik} = 116(60)$ $N_{sh}^{BH} = 20(41)$

eventi di eiconale e da BH molto maggiori di quelli del Modello Standard

il maggior numero di eventi di eiconale dipende dalla sensitività di IceCube

ricordare: $E_{sh} = y E_{\nu}$

Eventi di "TeV-gravity" ad IceCube

J.Illana, M. Masip and D.M., Phys.Rev.Lett. 93 (2004) 151102; anche hep-ph/0504...(presto sul web) segnale: sciami adronici da evaporazione di BH e da scattering elastico fondo dal Modello Standard: sciami adronici da interazioni di neutrino a corrente carica e neutra; sciami elettromagnetici da interazioni a corrente carica di ν_e

numero totale di eventi (flusso ottimista, n=2 (6))

$$N_{sh}^{SM} = 1.3$$
 $N_{sh}^{eik} = 116(60)$ $N_{sh}^{BH} = 20(41)$

eventi di eiconale e da BH molto maggiori di quelli del Modello Standard

- il maggior numero di eventi di eiconale dipende dalla sensitività di IceCube
- per distinguere effetti di nuova fisica da incertezze nella stima dei flussi di neutrino: cercare gli Earth-skimming neutrinos (Feng et al., hep-ph/0105067)
- per distinguere processi elastici da quelli di BH: distribuzione degli eventi in energia ed angolo di zenith

Eventi di "TeV-gravity" ad IceCube

• distribuzione in energia dello sciame (preliminare)

distribuzione in energia abbastanza diversa: - la distribuzione di eventi da BH seguono la "forma" del flusso in quanto $E_{sh} = 0.8 E_{\nu}$

- gli eventi di eiconale sono concentrati a piccoli valori di ${\cal E}_{sh}$

utile per distringuere i due tipi di processi

• distribuzione in angolo normalizzata (preliminare) la distribuzione angolare dipende da $P_{surv}(E_{\nu}, \theta_z) = \exp \left[-X(\theta_z)N_A\sigma\right]$

 $\sigma = \sigma_{SM} + \sigma_{BH}$: per $\cos \theta_z \approx 0.11~(0.45)$ la lunghezza $L(\theta_z) \approx X(\theta_z) / \rho_{ice}$ è uguale al libero cammino medio dei ν : $L = 1/(\rho_{ice} \sigma N_A) \Rightarrow$ raggiungono il detector da piccoli angoli (per entrambe le categorie di eventi)

 $\sigma = \sigma_{SM}$: l'angolo scende fino a $\cos \theta_z \approx -0.03$

non utile per distinguere la tipologia di evento

Limiti su M_D da IceCube

l'assenza di ogni segnale implicherebbe un limite $M_D\gtrsim$ 5 TeV

limiti dai colliders (analisi combinata al 90 % CL da LEP e Tevatron)
 Giudice and Strumia, Nucl. Phys. B 663, 377 (2003)

$$M_D > 1.4(0.6)$$
 TeV

limiti dall'astrofisica (estremamente model-dependent)
 Feruglio, Eur.Phys.J.C33:S114-S128,2004

 $M_D > 22$ TeV for n = 2

Conclusioni

- la propagazione dei raggi comsici più energetici induce un flusso di neutrini cosmogenici che possono essere osservati in sciami atmosferici e nei telescopi di neutrini
- l'assenza di sciami "deeply penetrating" in Agasa e Fly's Eye implica un limite su M_D intorno ad 1 TeV
- i telescopi di neutrini sono sensibili a processi *soft* in cui un neutrino perde solo una piccola percentuale della sua energia
- tali processi sono ben descritti dall'approssimazione eiconale e danno un segnale piú forte di quelli ottenuti in seguito all'evaporazione dei buchi neri
- 1 anno di osservazione in IceCube innalzerebbe il limite su M_D fino a 5 TeV

Trasparenze di backup

Le scale di energia e il regime transplanckiano

Giudice, Rattazzi, Wells [Nucl.Phys.B630:293-325,2002]

La relazione tra G_D e la scala di Planck D-dimensionale é

$$G_D = (2\pi R)^n G_N = \frac{(2\pi)^{n-1} \hbar^{n+1}}{4c^{n-1} M_D^{n+2}} , \quad G_N = \frac{\hbar c}{M_P^2} .$$

• lunghezza di Planck (distanza sotto la quale gli effetti di gravità quantistica diventano importanti):

$$\lambda_P = \left(\frac{G_D\hbar}{c^3}\right)^{\frac{1}{n+2}}$$

• lunghezza di de Broglie delle particelle interagenti (che caratterizza la loro quantum length scale):

$$\lambda_B = \frac{4\pi\hbar c}{\sqrt{\hat{s}}}$$

• raggio di Schwarzschild (orizzonte degli eventi per la formazione di un BH: effetti di curvatura diventano importanti)

$$per \ \hbar \to 0, \ con \ G_D \ e \ \sqrt{s} \ fisse \left\{ \begin{array}{c} \mathbf{M_D siannulla} \Longrightarrow \\ \lambda_{\mathbf{P}}, \lambda_{\mathbf{B}} \mathbf{vanish} \Longrightarrow \\ \lambda_{\mathbf{S}} \ caratterizza \ la \ dinamica \end{array} \right. \\ \left. \begin{array}{c} la \ fisica \ classica \ corrisponde \\ ad \ energie \ trasplanckiane \\ \lambda_{\mathbf{P}}, \lambda_{\mathbf{B}} \mathbf{vanish} \Longrightarrow \\ R_S \ caratterizza \ la \ dinamica \end{array} \right.$$

Le scale di energia e il regime transplanckiano

Giudice, Rattazzi, Wells [Nucl.Phys.B630:293-325,2002]

per
$$\hbar \to 0$$
, con G_D e \sqrt{s} fisse
$$\begin{cases} \mathbf{M_D \ si \ annulla} \Longrightarrow & \begin{array}{la \ fisica \ classica \ corrisponde \ ad \ energie \ trasplanckiane \ \lambda_{\mathbf{P}}, \lambda_{\mathbf{B}} \ si \ annullano \Longrightarrow R_S \ caratterizza \ la \ dinamica \$$

Fisica non-perturbativa: non si può espandere $\exp(-S/\hbar)$ perchè l'azione classica S è più grande di \hbar .

- Per arginare il problema, si considerano solo parametri di impatto $b \gg R_S$
 - ⇒ Small curvature, nearly flat metric, weak gravitational field, negligible non-linear gravitational couplings

 \Downarrow

l'interazione tra i neutrini di alta energia e il debole campo gravitazionale viene calcolata usando l' approssimazione eiconale

• quando i parametri di impatto si avvicinano a R_S ci aspettiamo di entrare in regime classico nel quale il campo gravitazionale è forte, effetti non lineari sono importanti e si formano buchi neri

la sezione d'urto può essere stimata solo tramite argomenti dimensionali

Scattering con scambio di gravitoni

Feynmal rules:

• Propagator of particle $[\Phi(p)]$:

$$\frac{i}{p^2 + i\epsilon}$$

• Propagator of graviton [G(q)]:

$$\frac{i\mathcal{P}_{\mu\nu\alpha\beta}}{q^2+i\epsilon} \ , \quad \text{with } \mathcal{P}_{\mu\nu\alpha\beta} = \frac{1}{2} \left(\eta_{\mu\alpha}\eta_{\nu\beta} + \eta_{\mu\beta}\eta_{\nu\alpha} - \eta_{\mu\nu}\eta_{\alpha\beta} \right) \quad (\text{de Donder gauge}).$$

• Vertex $[\Phi(p)\Phi(p')G(p-p')]$ in the limit of small momentum transfer:

$$\frac{i}{\bar{M}_P} \left[p_\mu p'_\nu + p_\nu p'_\mu - \eta_{\mu\nu} (p \cdot p') \right] \simeq \frac{2i}{\bar{M}_P} p_\mu p_\nu \ .$$

Scattering amplitude (t-channel graviton exchange):

$$i\mathcal{M}_{\text{Born}} = -\frac{4i}{\bar{M}_P^2} p_1^{\mu} p_1^{\nu} \frac{\mathcal{P}_{\mu\nu\alpha\beta}}{q^2 + i\epsilon} p_2^{\alpha} p_2^{\beta} ,$$

that is $(\hat{t}=q^2pprox-q_{\perp}^2)$

$$\mathcal{M}_{\rm Born}(q_{\perp}) = -\frac{1}{\bar{M}_P^2} \frac{\hat{s}^2}{\hat{t}} +$$

• Graviton exchange at one loop

Sum of four symmetrized ladder and crossed ladder graphs with $q = p_1 - p_3 = p_4 - p_2$:

$$i\mathcal{M}_{1-\text{loop}} = \frac{1}{2} \left(\frac{2}{\bar{M}_{P}^{2}}\right)^{2} \int \frac{d^{4}k}{(2\pi)^{4}} p_{1}^{\mu} p_{1}^{\nu} \mathcal{P}_{\mu\nu\alpha\beta} p_{2}^{\alpha} p_{2}^{\beta}$$

$$\times \frac{1}{-2p_{1} \cdot k + i\epsilon} \frac{1}{2p_{2} \cdot k + i\epsilon} \frac{1}{k^{2} + i\epsilon} \frac{1}{(q - k)^{2} + i\epsilon} p_{3}^{\mu'} p_{3}^{\nu'} \mathcal{P}_{\mu'\nu'\alpha'\beta'} p_{4}^{\alpha'} p_{4}^{\beta'}$$

$$+ \text{crossed and symmetrized diagrams}$$

$$= \frac{1}{2} \left(\frac{2}{\bar{M}_{P}^{2}}\right)^{2} \frac{\hat{s}^{4}}{4} \int \frac{d^{4}k}{(2\pi)^{4}} \frac{1}{k^{2} + i\epsilon} \frac{1}{(q - k)^{2} + i\epsilon}$$

$$\times \left(-\frac{1}{2p_{1} \cdot k - i\epsilon} \frac{1}{2p_{2} \cdot k + i\epsilon} - \frac{1}{2p_{3} \cdot k + i\epsilon} \frac{1}{2p_{4} \cdot k - i\epsilon} + \frac{1}{2p_{1} \cdot k - i\epsilon} \frac{1}{2p_{2} \cdot k - i\epsilon} + \frac{1}{2p_{3} \cdot k + i\epsilon} \frac{1}{2p_{2} \cdot k + i\epsilon}\right)$$

Now take $p_1 \approx p_3$ and $p_2 \approx p_4$:

$$\begin{split} i\mathcal{M}_{1-\text{loop}} &= \frac{\hat{s}^4}{2\bar{M}_P^4} \int \frac{d^4k}{(2\pi)^4} \frac{1}{k^2(q-k)^2} \\ &\times \left(\frac{1}{2p_1 \cdot k + i\epsilon} - \frac{1}{2p_1 \cdot k - i\epsilon}\right) \left(\frac{1}{2p_2 \cdot k + i\epsilon} - \frac{1}{2p_2 \cdot k - i\epsilon}\right) \\ &= \frac{\hat{s}^4}{2\bar{M}_P^4} \int \frac{d^4k}{(2\pi)^4} \frac{1}{k^2(q-k)^2} [-2\pi i\delta(2p_1 \cdot k)] [-2\pi i\delta(2p_2 \cdot k)] \\ &= -\frac{\hat{s}^4}{2\bar{M}_P^4} \int \frac{d^4k}{(2\pi)^2} \frac{1}{k^2(q-k)^2} \frac{\delta(k^0)\delta(k^3)}{2\hat{s}} \\ &= -\frac{\hat{s}^3}{4\bar{M}_P^4} \int \frac{d^2k_\perp}{(2\pi)^2} \frac{1}{k_\perp^2(q_\perp - k_\perp)^2} \;, \end{split}$$

Finally, one can write

$$\mathcal{M}_{1-\text{loop}}(q_{\perp}) = \frac{i}{4\hat{s}} \int \frac{d^2 k_{\perp}}{(2\pi)^2} \mathcal{M}_{\text{Born}}(k_{\perp}^2) \mathcal{M}_{\text{Born}}((q_{\perp} - k_{\perp})^2) \ .$$

"TeV-gravity" e teoria di stringa

The TeV gravity should be embedded in a string theory, which would relate M_D with the string scale $M_S\,.$

In the simplest set-up: SM fields (open strings) would be attached to a 4d brane, gravity (closed strings) would propagate in the whole Dd space.

$$M_D^{n+2} = \frac{8\pi}{g^4} M_S^{n+2} ,$$

with g the string coupling.

The transplanckian regime corresponds to energies above the string scale, where any tree-level amplitude becomes very *soft*. In the ultraviolet string amplitudes go to zero exponentially at fixed angle and, basically, only the forward (long distance) contribution of the graviton survives

Flusso di protoni primari

parametrizzazione dello spettro di protoni con legge a potenza (D. V. Semikoz and G. Sigl, JCAP 0404, 003 (2004))

$$\phi(E, z) = f(1+z)^m E^{-\alpha} \Theta(E_{\max} - E)$$
$$z_{\min} \le z \le z_{\max}$$

f è la normalizzazione che deve essere fissata dai dati sperimentali. I parametri liberi sono l'indice spettrale α , l'energia massima E_{\max} , il minimo e massimo redshift z_{\min} , z_{\max} , e l'indice di evoluzione del redshift m. Lo spettro di neutrini risultante dipende in modo non significativo da z_{\min} in $0 \le z_{\min} \le 0.1$; nelle nostre stime è stato fissato a $z_{\min} = 0$

Sciami atmosferici

The Earth's atmospheric depth: from $X_v \sim 10^3 g/cm^2$ vertically to nearly $X_h \sim 36 X_v$ interaction length: $\lambda = A/(N_A \sigma)$ $\lambda_\nu \sim \mathcal{O}(10^6/10^7) g/cm^2 >> X_h$ $\begin{cases} -\nu' \text{s interact with } \sim \text{ equal prob. at any point} \\ -\text{they may initiate showers near the detector} \end{cases}$

 $\lambda_{had} \sim \mathcal{O}(10) \; g/cm^2 << X_v \Rightarrow$ quasi-horizontal showers adsorbed before reaching the ground

The signal for UHE $\nu's$ is quasi-orizontal air showers initiated deep in the atmosphere. They can be observed by ground arrays and fluorescence detectors

Rate degli eventi in esperimenti terrestri

 ν interagiscono con i nuclei nell'atmosfera originando sciami elettromagnetici (EM) e adronici (Had)

dipendendo dalla natura della prima interazione

SM CC producono sciami sia Had che EM

la rate degli eventi è data da

$$\frac{dN}{dE_{\nu}} = N_A \sum_{i=1,2,3} \sum_{\nu_i,\bar{\nu}_i} \frac{d\phi_{\nu_i}}{dE_{\nu}} \int_0^1 dy \ \mathcal{E}(yE_{\nu}) \frac{d\sigma_i}{dy}(E_{\nu},y)$$

Exposure:

$$\mathcal{E}(E) \approx \int_{0}^{T} dt \int_{0}^{h_{max}} \underbrace{A_{eff}(E)}_{\rho_{water}} \frac{\rho_{0}}{\rho_{water}} \underbrace{e^{-h/H}}_{\rho_{water}} dh$$

area del detector pesata con la probabilità di rivelazione e integrata sull'angolo solido range delle distanze entro le quali deve prodursi lo sciame per "triggerare" l'apparato

Limiti su M_D da esperimenti terrestri

We need to specify the exposures for different interactions and experiments two examples: AGASA and Fly's Eye

• AGASA

a very large surface array covering an area of about 100 km^2 ; 111 detectors on the ground (surface scintillator detectors) and 27 detectors under absorbers (muon detectors) sequentially connected with a pair of optical fibers. Separation of about 1 km

- $\mathcal{E}_{Had} > \mathcal{E}_{EM}$

the initial hadron interaction produces a strong muon component that remains until the shower reaches the ground. These muons (largely absent for EM showers) enhance triggering efficiency

- above some critical energy, the detector saturates

 1.5×10^8 s analized (Dec 1995-Nov 2000) expected background from hadronic shower: $1.72^{+0.14+0.65}_{-0.07-0.41}$ among 6 candidate events, 5 have been discarded no significant enhancement of deeply penetrating shower rates has been found

Limiti su M_D da esperimenti terrestri

We need to specify the exposures for different interactions and experiments two examples: AGASA and Fly's Eye

• Fly's Eye

The Fly's Eye (Utah) observes the passage of EAS through the atmosphere via the excitation of atmospheric nitrogen by the charged particles in the shower

-fluorescence detectors are sensitive to the EM activity along the entire longitudinal development of the shower

-Had shower
$$\begin{cases} \pi^{\mathbf{0}} \to \gamma \to \mathbf{EM \ activity} \\ \pi^{\pm} \to \mathbf{interactions} \to \mathbf{EM \ activity} \\ \downarrow \\ 90 \ \% \ of \ E_{Had} \ goes \ into \ \mathbf{EM \ activity} \\ \downarrow \\ \mathcal{E}_{Had} \approx \mathcal{E}_{EM} \end{cases}$$

observation time: Feb 1983-May 1985 ⊕ Nov 1985-Jul 1992 <u>no neutrino candidates have been found</u>

Exposures per AGASA e Fly's eye

 $\nu_e\,\,{\rm CC}$ give both EM and Had showers, $\nu_{\mu(\tau)}\,\,{\rm CC}$ give Had showers only NC (SM and beyond) give Had showers only

$\mathcal{E}(yE_{\nu})$	$\stackrel{(-)}{\nu_e}$ [CC]	$\stackrel{(-)}{ u_{\mu}}$, $\stackrel{(-)}{ u_{ au}}$ [CC]	$\stackrel{(-)}{ u_i}$ [NC]
AGASA	min{ $\mathcal{E}_{had}(yE_{\nu}) + \mathcal{E}_{em}((1-y)E_{\nu}), \mathcal{E}_{sat}$ }	${\cal E}_{ m had}(yE_{m u})$	${\cal E}_{ m had}(yE_{ u})$
Fly's Eye	$\mathcal{E}(E_{\nu})$	${\cal E}(y E_{m u})$	${\cal E}(y E_{ u})$
Auger	$\mathcal{E}_{ m had}(yE_{ u}) + \mathcal{E}_{ m em}((1-y)E_{ u})$	${\cal E}_{ m had}(yE_{m u})$	${\cal E}_{ m had}(yE_{m u})$

 $y = \text{inelasticity factor} \left(\frac{E_{sh}}{E_{\nu}}\right) \begin{cases} < y >= 0.2 \text{ for SM processes} \\ < y >= 0.8 \text{ for BH decay} \\ \text{any value for eikonal interactions} \end{cases}$

TeV gravity events at neutrino telescopes

Relevant parameters describing the ability to detect (contained) showers

 $\begin{array}{l} \mbox{depth of the detector } (d_{v}) \\ \mbox{size of the detector (length L and area A)} \\ \mbox{threshold energy } (E^{th}_{sh}) \end{array}$

Telescope	under	$d_v~[{ m km}]$	$L [{ m km}]$	$A [\mathrm{km}^2]$	$E_{\rm sh}^{\rm th} [{\rm TeV}]$
Baikal	water	1.1	0.1	0.01	1
ANTARES	water	2.3 (2.20 - 2.50)	0.3	0.10	2
NEMO	water	3	1.0	1.00	???
AMANDA	ice	1.8 (1.50 - 2.20)	0.7	0.03	2
IceCube	ice	1.8 (1.35 - 2.35)	1.0	1.00	50

Limiti su M_D dall'astrofisica

The graviton Kaluza-Klein modes have masses equal to |n|/R, and therefore the different excitations have mass splittings

$$\Delta m \sim \frac{1}{R} \sim \left(\frac{M_D}{\text{TeV}}\right)^{\frac{n+2}{2}} 10^{\frac{12n-31}{n}} \text{eV}$$

If we take $M_D = 1$ TeV and n = 2, 4, 6, then Δm is equal to 10^{-4} eV, 20 keV and 7 MeV,

respectively. If n is not too large (say $n \leq 6$), the explosion of a supernova of typical temperature

of 50 MeV makes kinematically accessible the Kaluza-Klein level and one can derive the bound

$$M_D > 22 \text{ TeV}$$

this problem can be evaded if the spectrum of KK gravitons has a sufficient gap. For instance, a gap higher than the temperature of the hottest present astrophysical object (\sim 100 MeV), removes all the astrophysical bounds