

Patrizia Azzi-Bacchetta INFN - Padova

IFAE @ Catania - March 30th 2005

Motivation

- The top quark mass is a fundamental parameter of SM
- Top and W mass measurements constrain the mass of the Higgs Boson

 $\Delta M_W \alpha M_T^2 - \Delta M_W \alpha \ln M_H$

- Top is the only fermion with a mass of the order of EW symmetry breaking scale
 - M_{top} ~ VEV of the Higgs field – special role of the top quark?

80.6 LEP1, SLD Data --- LEP2, pp Data 80.5 68% CL [GeV] ^w [GeV] CDF&D0 @2 fb⁻¹ 80.3 m_H [GeV Preliminary 14 80.2 170 130 150 190 210 m, [GeV] hep-ph/0410177

Top mass measurement

New Run1 analysis on the sample of ~125 pb⁻¹ collected by D0 in 1994 - 1996

- Lepton + jets sample
- Matrix Element type analysis technique *Nature* 429, 638-642 (2004)

P. Azzi-Bacchetta, INFN PD

New world average m₊ =178.0 ± 4.3 GeV/c²

IFAE@Catania, 3/30/2005

IFAE@Catania, 3/30/2005

Lepton + Jets Channel

High-pT electron, muon with missing ET and ≥4 jets (2 are b-jets)

IFAE@Catania, 3/30/2005

L+jets Topological cross section (CDF)

Use jet energy and event shape info to discriminate top pairs from W + jets

Fit to data distribution to extract top pair signal fraction (15-20%)

- Large uncertainty for energy scale when fitting jet energies
- In future, can apply b-tagging before performing fit

IFAE@Catania, 3/30/2005

L+jets topological cross section (D0)

Combined $\sigma_{tt} = 7.2 + 2.6 + 2.4 \text{ (stat.)} + 1.6 + 1.7 \text{ (syst.)} \pm 0.5 \text{ (lum.) pb}$

IFAE@Catania, 3/30/2005

Estimate backgrounds in the lepton + jets sample from first principles:

- Using data as much as possible (fake W bosons, fake b-tags)
- Some MC calculations for diboson and W + heavy flavor backgrounds

Most precise measurements at Run 2 are in b-tagged lep+jets sample

Larger statistics and eff(b-tag) allow first double-b-tag measurements!

D0 Run II preliminary

IFAE@Catania, 3/30/2005

Top Mass - Template Method

Template method: data are compared with signal and background MCs

	Particles	Unknowns
	t's	7
	Х	2
	W's	6
	b's	0
	q's	0
	1	0
	\mathbf{v}	3
IFAE@C	Total	18

DO I+jets Template Mass

IFAE@Catania, 3/30/2005

P. Azzi-Bacchetta, INFN PD

D0 I+jets Template Mass

Source	Topological (GeV/c ²)	b-tagged (GeV/c ²)
Statistical	±5.8	±4.2
Jet Energy Scale	+6.8 -6.5	+4.7 -5.3
Jet Resolution	±0.9	±0.9
Gluon Radiation	±2.6	±2.4
Signal Model	+2.3	+2.3
Background Model	+0.7	±0.8
<i>b</i> -tagging		±0.7
Calibration (fitting bias)	±0.5	±0.5
Trigger	±0.5	±0.5
MC Statistics	±0.5	±0.5
Total Systematic	+7.8 -7.1	±6.0

- > Sum over all 12 permutations of jets and neutrino solutions
- > Background process ME are (or not) explicitly included in the likelihood
- > Top mass: maximize $\Pi_i P^i (M_{top})$

IFAE@Catania, 3/30/2005

lepton+jets (CDF): DLM

Jet Energy Corrections

- > Non-linear response
- > Uninstrumented regions
- Response to different particles
- > Out of cone E-loss
- > Spectator interactions
- > Underlying event

IFAE@Catania, 3/30/2005

P. Azzi-Bacchetta, INFN PD

ΙΝΓΝ

Jet Energy Scale

- Both experiment working toward reducing the systematics from jet energy scale
 - D0 still quoting a 5% for jets with $E_T \ge 30$ GeV (was 2.5% in Run I)
 - New Run2 CDF systematic uncertainties are now same or better than Run1

Determine the b-quark energy scale from Z->bb

- > ...but first we have to see the Z→bb decay in our data.
 - The S/N is not higher than 1/5 at the most in the signal region

Improving the Top Mass Measurement

Double b-tagged events with no extra jets and a back-to-back topology are the signal-enriched sample: $E_t^3 < 10$ GeV, $\Delta \Phi_{12} > 3$

Among 85,784 selected events CDF finds 3400±500 Z→bb decays

- signal size ok
- resolution as expected
- jet energy scale ok!

IFAE@Catania, 3/30/2005

- Single top quarks produced by weak interaction are a direct probe of top quark weak couplings.
 - Measure $|V_{tb}|$ without assuming three-generation unitarity.
- Cross section is close to top quark pair production cross section (2.9 pb vs. 6.7 pb), but background is much larger because there are fewer jets.

IFAE@Catania, 3/30/2005

New DO Limits!

Limit from 2D binned likelihood (NN vs. NN)

Previous Limits (95% CL)

s-channel

 $\label{eq:starsessense} \begin{array}{l} \sigma < 17 \mbox{ pb} \mbox{ (D0 Run I)} \\ \sigma < 18 \mbox{ pb} \mbox{ (CDF Run I)} \\ \sigma < 13.6 \mbox{ pb} \mbox{ (CDF Run II)} \end{array}$

• t-channel

 $\label{eq:starsest} \begin{array}{l} \sigma < 22 \mbox{ pb (D0 Run I)} \\ \sigma < 13 \mbox{ pb (CDF Run I)} \\ \sigma < 10.1 \mbox{ pb (CDF Run II)} \end{array}$

s+t combined

 σ < 14 pb (CDF Run I) σ < 17.8 pb (CDF Run II)

IFAE@Catania, 3/30/2005

Di-lepton Datasets

2 lepton + \geq 2 jets + missing E_T sample is small but very clean for top signal

> Event Selection

- \bullet one isolated and well identified lepton (e, $\mu)$
- second oppositely charged lepton (e, μ): tight or loose identification (isolated track)
- \bullet Significant missing transverse energy from the two $\nu 's$
- $N(jets) \ge 2$ to account for the b's
- Additional topological or kinematic selection

Physics backgrounds:

• Z-->ττ, WW

Instrumental backgrounds:

- Fake isolated leptons
- Fake missing E_{T}

IFAE@Catania, 3/30/2005

Dilepton cross section (D0)

....

First without b-tagging

then require a b-tag

IFAE@Catania, 3/30/2005

DZero Preliminary (158 pb⁻¹)

Expected Sample	N _{jets} ≥2	After tagging
Тор	4.58±0.09	2.70±0.09
WW	0.46±0.03	0.008±0.002
Ζ_ττ	0.6±0.1	0.017±0.007
Ζ_μμ	0.10±0.04	<0.005
QCD, W+j	0.33±0.04	0.011±0.002
Total	6.1±0.2	2.74±0.09

Reduce background in eµ channel with b-tagging!

5 observed events with negl bkgd $\sigma = 11.1^{+5.8}_{-4.3} \pm 1.4 \pm 1.7$ (lumi) pb

Dilepton Cross section (CDF)

Tight-tight sample ...or... tight-loose sample

Cross section requires careful study of background contributions
Ready for comparison of kinematic distributions in the sample

IFAE@Catania, 3/30/2005

... or even looser cuts to increase number of signal events...

Fit distributions for all physics backgrounds and find 10 top dilepton events in ee,eµ,µµ

CDF Preliminary 200 pb⁻¹

$$\sigma = 8.6^{+2.5}_{-2.4} \pm 1.1 \,\mathrm{pb}$$

IFAE@Catania, 3/30/2005

The final state is under-constrained: how do the analyses solve the problem of under-constrain kinematics?

• introduces one constraint: $P_z^{tt} = P_z^{t} + P_z^{t} = 0$

- scan $\eta_{\nu 1}$ and $\eta_{\nu 2,}$ assume m_t and M_w , calculate the maximum of the event probability vs m_t (DØ Run1)
- \blacksquare scan the φ_{v1} and φ_{v2}

Three independent mass analyses in two experiments with consistent results!

- > Dominant Backgrounds
 - Di-boson, W+jets with a jet faking a lepton, Drell-Yan $(Z/\gamma \rightarrow ee, \mu\mu, \tau\tau)$

m_{top} = 168.1 ± 10. (stat) ± 8.6 (sys) GeV/c²

IFAE@Catania, 3/30/2005

Dilepton mass (D0)

IFAE@Catania, 3/30/2005

All-Jets Channel (D0)

Challenge to separate top from QCD multijet production Neural Network 2 output

Kinematic neural network

- total transverse energy H_T
- aplanarity, sphericity
- rough cut on tagged events

Final Neural Network variables are sensitive to high mass objects:

- output from first neural network
- dijet masses, top pair mass

Fit for 220 evts, estimate 186 are bkgd (large error from jet energy scale)

 $\sigma = 7.7^{+3.4}_{-3.3} (\text{stat})^{+4.7}_{-3.8} (\text{syst}) \pm 0.5 (\text{lumi}) \,\text{pb}$

IFAE@Catania, 3/30/2005

 $\sigma = 7.8 \pm 2.5$ (stat.) $^{+4.7}_{-2.3}$ (syst.) pb competitive with neural network

IFAE@Catania, 3/30/2005

Summary of tt Cross Sections

DØ Run II Preliminary

IFAE@Catania, 3/30/2005

 Current results: systematic uncertainty largely dominated by jet energy scale (CDF & D0)

I N F N

- New corrections and systematics available for CDF
- New mass measurements with Run I-like or better JES uncertainties SOON!

error bars: red=stat, blue=total IFAE@Catania, 3/30/2005

- > Measurements status:
 - Cross Section in lepton+jets already systematics limited:
 - Jet Energy Scale
 - B-tagging efficiency
 - Mass measurements also need improved JES

New results with higher statistics and better systematics coming soon!

- > New things to expect:
 - Add new channels
 - More significant measurement of the top properties
- Tevatron performing well: experiment very busy in staying after the data and using all of them!
 - Lots of work on triggers at high luminosity
 - D0 will upgrade the vertex detector at the end of the year

IFAE@Catania, 3/30/2005